210,339 research outputs found

    Conservative and non-conservative methods based on hermite weighted essentially-non-oscillatory reconstruction for Vlasov equations

    Get PDF
    We introduce a WENO reconstruction based on Hermite interpolation both for semi-Lagrangian and finite difference methods. This WENO reconstruction technique allows to control spurious oscillations. We develop third and fifth order methods and apply them to non-conservative semi-Lagrangian schemes and conservative finite difference methods. Our numerical results will be compared to the usual semi-Lagrangian method with cubic spline reconstruction and the classical fifth order WENO finite difference scheme. These reconstructions are observed to be less dissipative than the usual weighted essentially non- oscillatory procedure. We apply these methods to transport equations in the context of plasma physics and the numerical simulation of turbulence phenomena

    Numerical solution of a coupled pair of elliptic equations from solid state electronics

    Get PDF
    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem

    Numerical solution of transonic full stream function equations in conservation form

    Get PDF
    The stream function equation in conservation form is solved iteratively based on the artificial compressibility method. The density is not a unique function of the mass flux. In order to avoid the ambiguity near the sonic line, the density is updated in terms of the velocity, which is obtained through a simple integration of a first order equation step by step in the flow field. Iteration algorithms and finite difference approximations are discussed and numerical results of both conservative and nonconservative calculations are presented

    A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows

    Get PDF
    This paper describes a hybrid finite-difference method for the large-eddy simulation of compressible flows with low-numerical dissipation and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described with an explicit centered scheme used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. Three-dimensional numerical simulations of a Richtmyer-Meshkov instability are presented

    Analysis of viscous transonic flow over airfoil sections

    Get PDF
    A full Navier-Stokes solver has been used to model transonic flow over three airfoil sections. The method uses a two-dimensional, implicit, conservative finite difference scheme for solving the compressible Navier-Stokes equations. Results are presented as prescribed for the Viscous Transonic Airfoil Workshop to be held at the AIAA 25th Aerospace Sciences Meeting. The NACA 0012, RAE 2822 and Jones airfoils have been investigated for both attached and separated transonic flows. Predictions for pressure distributions, loads, skin friction coefficients, boundary layer displacement thickness and velocity profiles are included and compared with experimental data when possible. Overall, the results are in good agreement with experimental data
    corecore