1,674,870 research outputs found
Input Efficiency for Influencing Swarm
Many cooperative control problems ranging from formation following, to rendezvous to flocking can be expressed as consensus problems. The ability of an operator to influence the development of consensus within a swarm therefore provides a basic test of the quality of human-swarm interaction (HSI). Two plausible approaches are : Direct- dictate a desired value to swarm members or Indirect- control or influence one or more swarm members relying on existing control laws to propagate that influence. Both approaches have been followed by HSI researchers. The Indirect case uses standard consensus methods where the operator exerts influence over a few robots and then the swarm reaches a consensus based on its intrinsic rules. The Direct method corresponds to flooding in which the operator directly sends the intention to a subset of the swarm and the command then propagates through the remainder of the swarm as a privileged message. In this paper we compare these two methods regarding their convergence time and properties in noisy and noiseless conditions with static and dynamic graphs. We have found that average consensus method (indirect control) converges much slower than flooding (direct) method but it has more noise tolerance in comparison with simple flooding algorithms. Also, we have found that the convergence time of the consensus method behaves erratically when the graph’s connectivity (Fiedler value) is high
Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case
In this technical note, the H∞ consensus control problem is investigated over a finite horizon for general discrete time-varying multi-agent systems subject to energy-bounded external disturbances. A decentralized estimation-based output feedback control protocol is put forward via the relative output measurements. A novel event-based mechanism is proposed for each intelligent agent to utilize the available information in order to decide when to broadcast messages and update control input. The aim of the problem addressed is to co-design the time-varying controller and estimator parameters such that the controlled multi-agent systems achieve consensus with a disturbance attenuation level γ over a finite horizon [0,T]. A constrained recursive Riccati difference equation approach is developed to derive the sufficient conditions under which the H∞ consensus performance is guaranteed in the framework of event-based scheme. Furthermore, the desired controller and estimator parameters can be iteratively computed by resorting to the Moore-Penrose pseudo inverse. Finally, the effectiveness of the developed event-based H∞ consensus control strategy is demonstrated in the numerical simulation
Output consensus of nonlinear multi-agent systems with unknown control directions
In this paper, we consider an output consensus problem for a general class of
nonlinear multi-agent systems without a prior knowledge of the agents' control
directions. Two distributed Nussbaumtype control laws are proposed to solve the
leaderless and leader-following adaptive consensus for heterogeneous multiple
agents. Examples and simulations are given to verify their effectivenessComment: 10 pages;2 figure
Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators
This paper presents a solution based on dual quaternion algebra to the
general problem of pose (i.e., position and orientation) consensus for systems
composed of multiple rigid-bodies. The dual quaternion algebra is used to model
the agents' poses and also in the distributed control laws, making the proposed
technique easily applicable to time-varying formation control of general
robotic systems. The proposed pose consensus protocol has guaranteed
convergence when the interaction among the agents is represented by directed
graphs with directed spanning trees, which is a more general result when
compared to the literature on formation control. In order to illustrate the
proposed pose consensus protocol and its extension to the problem of formation
control, we present a numerical simulation with a large number of free-flying
agents and also an application of cooperative manipulation by using real mobile
manipulators
- …
