77,447 research outputs found
Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms
The paper studies machine learning problems where each example is described
using a set of Boolean features and where hypotheses are represented by linear
threshold elements. One method of increasing the expressiveness of learned
hypotheses in this context is to expand the feature set to include conjunctions
of basic features. This can be done explicitly or where possible by using a
kernel function. Focusing on the well known Perceptron and Winnow algorithms,
the paper demonstrates a tradeoff between the computational efficiency with
which the algorithm can be run over the expanded feature space and the
generalization ability of the corresponding learning algorithm. We first
describe several kernel functions which capture either limited forms of
conjunctions or all conjunctions. We show that these kernels can be used to
efficiently run the Perceptron algorithm over a feature space of exponentially
many conjunctions; however we also show that using such kernels, the Perceptron
algorithm can provably make an exponential number of mistakes even when
learning simple functions. We then consider the question of whether kernel
functions can analogously be used to run the multiplicative-update Winnow
algorithm over an expanded feature space of exponentially many conjunctions.
Known upper bounds imply that the Winnow algorithm can learn Disjunctive Normal
Form (DNF) formulae with a polynomial mistake bound in this setting. However,
we prove that it is computationally hard to simulate Winnows behavior for
learning DNF over such a feature set. This implies that the kernel functions
which correspond to running Winnow for this problem are not efficiently
computable, and that there is no general construction that can run Winnow with
kernels
Conjunctions of Among Constraints
Many existing global constraints can be encoded as a conjunction of among
constraints. An among constraint holds if the number of the variables in its
scope whose value belongs to a prespecified set, which we call its range, is
within some given bounds. It is known that domain filtering algorithms can
benefit from reasoning about the interaction of among constraints so that
values can be filtered out taking into consideration several among constraints
simultaneously. The present pa- per embarks into a systematic investigation on
the circumstances under which it is possible to obtain efficient and complete
domain filtering algorithms for conjunctions of among constraints. We start by
observing that restrictions on both the scope and the range of the among
constraints are necessary to obtain meaningful results. Then, we derive a
domain flow-based filtering algorithm and present several applications. In
particular, it is shown that the algorithm unifies and generalizes several
previous existing results.Comment: 15 pages plus appendi
Bell-type inequalities for bivariate maps on orthomodular lattices
Bell-type inequalities on orthomodular lattices, in which conjunctions of
propositions are not modeled by meets but by maps for simultaneous measurements
(s-maps), are studied. It is shown that the most simple of these inequalities,
that involves only two propositions, is always satisfied, contrary to what
happens in the case of traditional version of this inequality in which
conjunctions of propositions are modeled by meets. Equivalence of various
Bell-type inequalities formulated with the aid of bivariate maps on
orthomodular lattices is studied. Our invesigations shed new light on the
interpretation of various multivariate maps defined on orthomodular lattices
already studied in the literature. The paper is concluded by showing the
possibility of using s-maps and j-maps to represent counterfactual conjunctions
and disjunctions of non-compatible propositions about quantum systems.Comment: 14 pages, no figure
David Hume's Reductionist Epistemology of Testimony
David Hume advances a reductionist epistemology of testimony: testimonial beliefs are justified on the basis of beliefs formed from other sources. This reduction, however, has been misunderstood. Testimonial beliefs are not justified in a manner identical to ordinary empirical beliefs; it is true, they are justified by observation of the conjunction between testimony and its truth, but the nature of the conjunctions has been misunderstood. The observation of these conjunctions provides us with our knowledge of human nature and it is this knowledge which justifies our testimonial beliefs. Hume gives a naturalistic rather than a sceptical account of testimony
Propagating Conjunctions of AllDifferent Constraints
We study propagation algorithms for the conjunction of two AllDifferent
constraints. Solutions of an AllDifferent constraint can be seen as perfect
matchings on the variable/value bipartite graph. Therefore, we investigate the
problem of finding simultaneous bipartite matchings. We present an extension of
the famous Hall theorem which characterizes when simultaneous bipartite
matchings exists. Unfortunately, finding such matchings is NP-hard in general.
However, we prove a surprising result that finding a simultaneous matching on a
convex bipartite graph takes just polynomial time. Based on this theoretical
result, we provide the first polynomial time bound consistency algorithm for
the conjunction of two AllDifferent constraints. We identify a pathological
problem on which this propagator is exponentially faster compared to existing
propagators. Our experiments show that this new propagator can offer
significant benefits over existing methods.Comment: AAAI 2010, Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligenc
The Guppy Effect as Interference
People use conjunctions and disjunctions of concepts in ways that violate the
rules of classical logic, such as the law of compositionality. Specifically,
they overextend conjunctions of concepts, a phenomenon referred to as the Guppy
Effect. We build on previous efforts to develop a quantum model that explains
the Guppy Effect in terms of interference. Using a well-studied data set with
16 exemplars that exhibit the Guppy Effect, we developed a 17-dimensional
complex Hilbert space H that models the data and demonstrates the relationship
between overextension and interference. We view the interference effect as, not
a logical fallacy on the conjunction, but a signal that out of the two
constituent concepts, a new concept has emerged.Comment: 10 page
- …
