57,991 research outputs found
Tuning the conductance of a molecular switch
The ability to control the conductance of single molecules will have a major
impact in nanoscale electronics. Azobenzene, a molecule that changes
conformation as a result of a trans/cis transition when exposed to radiation,
could form the basis of a light-driven molecular switch. It is therefore
crucial to clarify the electrical transport characteristics of this molecule.
Here, we investigate theoretically charge transport in a system in which a
single azobenzene molecule is attached to two carbon nanotubes. In clear
contrast to gold electrodes, the nanotubes can act as true nanoscale electrodes
and we show that the low-energy conduction properties of the junction may be
dramatically modified by changing the topology of the contacts between the
nanotubes and the molecules, and/or the chirality of the nanotubes (that is,
zigzag or armchair). We propose experiments to demonstrate controlled
electrical switching with nanotube electrodes
Gate Voltage Controllable Non-Equilibrium and Non-Ohmic Behavior in Suspended Carbon Nanotubes
In this work, we measure the electrical conductance and temperature of individual, suspended quasi-metallic single-walled carbon nanotubes under high voltage biases using Raman spectroscopy, while varying the doping conditions with an applied gate voltage. By applying a gate voltage, the high-bias conductance can be switched dramatically between linear (Ohmic) behavior and nonlinear behavior exhibiting negative differential conductance (NDC). Phonon populations are observed to be in thermal equilibrium under Ohmic conditions but switch to nonequilibrium under NDC conditions. A typical Landauer transport model assuming zero bandgap is found to be inadequate to describe the experimental data. A more detailed model is presented, which incorporates the doping dependence in order to fit this data
ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C_{60} device
We present an {\it ab initio} analysis of electron conduction through a
molecular device. Charge transfer from the device electrodes to the
molecular region is found to play a crucial role in aligning the lowest
unoccupied molecular orbital (LUMO) of the to the Fermi level of the
electrodes. This alignment induces a substantial device conductance of . A gate potential can inhibit charge transfer and
introduce a conductance gap near , changing the current-voltage
characteristics from metallic to semi-conducting, thereby producing a field
effect molecular current switch
Aharonov-Bohm Physics with Spin II: Spin-Flip Effects in Two-dimensional Ballistic Systems
We study spin effects in the magneto-conductance of ballistic mesoscopic
systems subject to inhomogeneous magnetic fields. We present a numerical
approach to the spin-dependent Landauer conductance which generalizes recursive
Green function techniques to the case with spin. Based on this method we
address spin-flip effects in quantum transport of spin-polarized and
-unpolarized electrons through quantum wires and various two-dimensional
Aharonov-Bohm geometries. In particular, we investigate the range of validity
of a spin switch mechanism recently found which allows for controlling spins
indirectly via Aharonov-Bohm fluxes. Our numerical results are compared to a
transfer-matrix model for one-dimensional ring structures presented in the
first paper (Hentschel et al., submitted to Phys. Rev. B) of this series.Comment: 29 pages, 15 figures. Second part of a series of two article
Tuning the conductance of Dirac fermions on the surface of a topological insulator
We study the transport properties of the Dirac fermions with Fermi velocity
on the surface of a topological insulator across a ferromagnetic strip
providing an exchange field over a region of width . We show
that the conductance of such a junction changes from oscillatory to a
monotonically decreasing function of beyond a critical . This
leads to the possible realization of a magnetic switch using these junctions.
We also study the conductance of these Dirac fermions across a potential
barrier of width and potential in the presence of such a
ferromagnetic strip and show that beyond a critical , the
criteria of conductance maxima changes from
to for integer . We point out that these novel phenomena
have no analogs in graphene and suggest experiments which can probe them.Comment: v1 4 pages 5 fig
- …
