39,366 research outputs found

    Concatenated Quantum Codes

    Get PDF
    One of the main problems for the future of practical quantum computing is to stabilize the computation against unwanted interactions with the environment and imperfections in the applied operations. Existing proposals for quantum memories and quantum channels require gates with asymptotically zero error to store or transmit an input quantum state for arbitrarily long times or distances with fixed error. In this report a method is given which has the property that to store or transmit a qubit with maximum error ϵ\epsilon requires gates with error at most cϵc\epsilon and storage or channel elements with error at most ϵ\epsilon, independent of how long we wish to store the state or how far we wish to transmit it. The method relies on using concatenated quantum codes with hierarchically implemented recovery operations. The overhead of the method is polynomial in the time of storage or the distance of the transmission. Rigorous and heuristic lower bounds for the constant cc are given.Comment: 16 pages in PostScirpt, the paper is also avalaible at http://qso.lanl.gov/qc

    Graph Concatenation for Quantum Codes

    Get PDF
    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code, and every codeword stabilized code can be described by a graph and a classical code. For the construction of good quantum codes of relatively large block length, concatenated quantum codes and their generalizations play an important role. We develop a systematic method for constructing concatenated quantum codes based on "graph concatenation", where graphs representing the inner and outer codes are concatenated via a simple graph operation called "generalized local complementation." Our method applies to both binary and non-binary concatenated quantum codes as well as their generalizations.Comment: 26 pages, 12 figures. Figures of concatenated [[5,1,3]] and [[7,1,3]] are added. Submitted to JM

    Concatenated Polar Codes

    Get PDF
    Polar codes have attracted much recent attention as the first codes with low computational complexity that provably achieve optimal rate-regions for a large class of information-theoretic problems. One significant drawback, however, is that for current constructions the probability of error decays sub-exponentially in the block-length (more detailed designs improve the probability of error at the cost of significantly increased computational complexity \cite{KorUS09}). In this work we show how the the classical idea of code concatenation -- using "short" polar codes as inner codes and a "high-rate" Reed-Solomon code as the outer code -- results in substantially improved performance. In particular, code concatenation with a careful choice of parameters boosts the rate of decay of the probability of error to almost exponential in the block-length with essentially no loss in computational complexity. We demonstrate such performance improvements for three sets of information-theoretic problems -- a classical point-to-point channel coding problem, a class of multiple-input multiple output channel coding problems, and some network source coding problems

    A Unified Ensemble of Concatenated Convolutional Codes

    Get PDF
    We introduce a unified ensemble for turbo-like codes (TCs) that contains the four main classes of TCs: parallel concatenated codes, serially concatenated codes, hybrid concatenated codes, and braided convolutional codes. We show that for each of the original classes of TCs, it is possible to find an equivalent ensemble by proper selection of the design parameters in the unified ensemble. We also derive the density evolution (DE) equations for this ensemble over the binary erasure channel. The thresholds obtained from the DE indicate that the TC ensembles from the unified ensemble have similar asymptotic behavior to the original TC ensembles

    Concatenated Codes for Amplitude Damping

    Full text link
    We discuss a method to construct quantum codes correcting amplitude damping errors via code concatenation. The inner codes are chosen as asymmetric Calderbank-Shor-Steane (CSS) codes. By concatenating with outer codes correcting symmetric errors, many new codes with good parameters are found, which are better than the amplitude damping codes obtained by any previously known construction.Comment: 5 page
    corecore