508,890 research outputs found
3-D inelastic analysis methods for hot section components (base program)
A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described
A strict error bound with separated contributions of the discretization and of the iterative solver in non-overlapping domain decomposition methods
This paper deals with the estimation of the distance between the solution of
a static linear mechanic problem and its approximation by the finite element
method solved with a non-overlapping domain decomposition method (FETI or BDD).
We propose a new strict upper bound of the error which separates the
contribution of the iterative solver and the contribution of the
discretization. Numerical assessments show that the bound is sharp and enables
us to define an objective stopping criterion for the iterative solverComment: Computer Methods in Applied Mechanics and Engineering (2013) onlin
Applications of Computer Simulations and Statistical Mechanics in Surface Electrochemistry
We present a brief survey of methods that utilize computer simulations and
quantum and statistical mechanics in the analysis of electrochemical systems.
The methods, Molecular Dynamics and Monte Carlo simulations and
quantum-mechanical density-functional theory, are illustrated with examples
from simulations of lithium-battery charging and electrochemical adsorption of
bromine on single-crystal silver electrodes.Comment: 12 pages, 5 figures, Invited Book Chapte
- …
