57,696 research outputs found
Infrared face recognition: a comprehensive review of methodologies and databases
Automatic face recognition is an area with immense practical potential which
includes a wide range of commercial and law enforcement applications. Hence it
is unsurprising that it continues to be one of the most active research areas
of computer vision. Even after over three decades of intense research, the
state-of-the-art in face recognition continues to improve, benefitting from
advances in a range of different research fields such as image processing,
pattern recognition, computer graphics, and physiology. Systems based on
visible spectrum images, the most researched face recognition modality, have
reached a significant level of maturity with some practical success. However,
they continue to face challenges in the presence of illumination, pose and
expression changes, as well as facial disguises, all of which can significantly
decrease recognition accuracy. Amongst various approaches which have been
proposed in an attempt to overcome these limitations, the use of infrared (IR)
imaging has emerged as a particularly promising research direction. This paper
presents a comprehensive and timely review of the literature on this subject.
Our key contributions are: (i) a summary of the inherent properties of infrared
imaging which makes this modality promising in the context of face recognition,
(ii) a systematic review of the most influential approaches, with a focus on
emerging common trends as well as key differences between alternative
methodologies, (iii) a description of the main databases of infrared facial
images available to the researcher, and lastly (iv) a discussion of the most
promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap
with arXiv:1306.160
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks
Light field imaging extends the traditional photography by capturing both
spatial and angular distribution of light, which enables new capabilities,
including post-capture refocusing, post-capture aperture control, and depth
estimation from a single shot. Micro-lens array (MLA) based light field cameras
offer a cost-effective approach to capture light field. A major drawback of MLA
based light field cameras is low spatial resolution, which is due to the fact
that a single image sensor is shared to capture both spatial and angular
information. In this paper, we present a learning based light field enhancement
approach. Both spatial and angular resolution of captured light field is
enhanced using convolutional neural networks. The proposed method is tested
with real light field data captured with a Lytro light field camera, clearly
demonstrating spatial and angular resolution improvement
Image segmentation with adaptive region growing based on a polynomial surface model
A new method for segmenting intensity images into smooth surface segments is presented. The main idea is to divide the image into flat, planar, convex, concave, and saddle patches that coincide as well as possible with meaningful object features in the image. Therefore, we propose an adaptive region growing algorithm based on low-degree polynomial fitting. The algorithm uses a new adaptive thresholding technique with the L∞ fitting cost as a segmentation criterion. The polynomial degree and the fitting error are automatically adapted during the region growing process. The main contribution is that the algorithm detects outliers and edges, distinguishes between strong and smooth intensity transitions and finds surface segments that are bent in a certain way. As a result, the surface segments corresponding to meaningful object features and the contours separating the surface segments coincide with real-image object edges. Moreover, the curvature-based surface shape information facilitates many tasks in image analysis, such as object recognition performed on the polynomial representation. The polynomial representation provides good image approximation while preserving all the necessary details of the objects in the reconstructed images. The method outperforms existing techniques when segmenting images of objects with diffuse reflecting surfaces
Graph Spectral Image Processing
Recent advent of graph signal processing (GSP) has spurred intensive studies
of signals that live naturally on irregular data kernels described by graphs
(e.g., social networks, wireless sensor networks). Though a digital image
contains pixels that reside on a regularly sampled 2D grid, if one can design
an appropriate underlying graph connecting pixels with weights that reflect the
image structure, then one can interpret the image (or image patch) as a signal
on a graph, and apply GSP tools for processing and analysis of the signal in
graph spectral domain. In this article, we overview recent graph spectral
techniques in GSP specifically for image / video processing. The topics covered
include image compression, image restoration, image filtering and image
segmentation
- …
