387,633 research outputs found
Effect of ligand methylation on the spin-switching properties of surface-supported spin-crossover molecules
X-ray absorption spectroscopy investigations of the spin-state switching of spin-crossover (SCO) complexes adsorbed on a highly-oriented pyrolytic graphite (HOPG) surface have shown so far that HOPG is a promising candidate to realize applications such as spintronic devices because of the stability of SCO complexes on HOPG and the possibility of highly efficient thermal and light-induced spin-state switching. Herein, we present the spin switching of several Fe(II) SCO complexes adsorbed on an HOPG surface with particular emphasis on the thermally induced spin transition behaviour with respect to different structural modifications. The complexes of the type [Fe(bpz)2(L)] (bpz = dihydrobis(pyrazolyl)borate, L = 1,10-phenanthroline, 2,2'-bipyridine) and their methylated derivatives exhibit SCO in the solid state with some differences regarding cooperative effects. However, in the vacuum-deposited thick films on quartz, complete and more gradual spin transition behavior is observable via UV/vis spectroscopy. In contrast to that, all complexes show large differences upon direct contact with HOPG. Whereas the unmodified complexes show thermal and light-induced SCO, the addition of e.g. two or four methyl groups leads to a partial or a complete loss of the SCO on the surface. The angle-dependent measurement of the N K-edge compared to calculations indicates that the complete SCO and HS-locked molecules on the surface exhibit a similar preferential orientation, whereas complexes undergoing an incomplete SCO exhibit a random orientation on the surface. These results are discussed in the light of molecule-substrate interactions
Could light harvesting complexes exhibit non-classical effects at room temperature?
Mounting experimental and theoretical evidence suggests that coherent quantum
effects play a role in the efficient transfer of an excitation from a
chlorosome antenna to a reaction center in the Fenna-Matthews-Olson protein
complex. However, it is conceivable that a satisfying alternate interpretation
of the results is possible in terms of a classical theory. To address this
possibility, we consider a class of classical theories satisfying the minimal
postulates of macrorealism and frame Leggett-Garg-type tests that could rule
them out. Our numerical simulations indicate that even in the presence of
decoherence, several tests could exhibit the required violations of the
Leggett-Garg inequality. Remarkably, some violations persist even at room
temperature for our decoherence model.Comment: 10 pages, 4 figures, 2 tables, submitted to the Proceedings of the
Royal Society
Enhanced cytotoxicity of silver complexes bearing bidentate N-heterocyclic carbene ligands
A diverse library of cationic silver complexes bearing bis(N-heterocyclic carbene) ligands have been prepared which exhibit cytotoxicity comparable to cisplatin against the adenocarcinomas MCF7 and DLD1. Bidentate ligands show enhanced cytotoxicity over monodentate and macrocyclic ligands
Pushing the limits of magnetic anisotropy in trigonal bipyramidal Ni(II)
Monometallic complexes based on 3d transition metal ions in certain axial coordination environments can exhibit appreciably enhanced magnetic anisotropy, important for memory applications, due to stabilisation of an unquenched orbital moment. For high-spin trigonal bipyramidal Ni(II), if competing structural distortions can be minimised, this may result in an axial anisotropy that is at least an order of magnitude stronger than found for orbitally non-degenerate octahedral complexes. Broadband, high-field EPR studies of [Ni(MDABCO)2Cl3]ClO4 (1) confirm an unprecedented axial magnetic anisotropy, which pushes the limits of the familiar spin-only description. Crucially, compared to complexes with multidentate ligands that encapsulate the metal ion, we see only a very small degree of axial symmetry breaking. 1 displays field-induced slow magnetic relaxation, which is rare for monometallic Ni(II) complexes due to efficient spin–lattice and quantum tunnelling relaxation pathways
Beneficial influence of nanocarbon on the aryliminopyridylnickel chloride catalyzed ethylene polymerization
A series of 1-aryliminoethylpyridine ligands (L1―L3) was synthesized by condensation of 2-acetylpyridine with 1-aminonaphthalene, 2-aminoanthracene or 1-aminopyrene, respectively. Reaction with nickel dichloride afforded the corresponding nickel (II) chloride complexes (Ni1–Ni3). All compounds were fully characterized and the molecular structures of Ni1 and Ni3 are reported. Upon activation with methylaluminoxane (MAO), all nickel complexes exhibit high activities for ethylene polymerization, producing waxes of low molecular weight and narrow polydispersity. The presence of multi-walled carbon nanotubes (MWCNTs) or few layer graphene (FLG) in the catalytic medium can lead to an increase of productivity associated to a modification of the polymer structure
- …
