1,156,087 research outputs found

    The flag f-vectors of Gorenstein* order complexes of dimension 3

    Full text link
    We characterize the cd-indices of Gorenstein* posets of rank 5, equivalently the flag f-vectors of Gorenstein* order complexes of dimension 3. As a corollary, we characterize the f-vectors of Gorenstein* order complexes in dimensions 3 and 4. This characterization rise a speculated intimate connection between the f-vectors of flag homology spheres and the f-vectors of Gorenstein* order complexes

    Modulation of internuclear communication in multinuclear Ruthenium(II) polypyridyl complexes

    Get PDF
    The syntheses and characterisation of a series of mononuclear and dinuclear ruthenium polypyridyl complexes based on the bridging ligands 1,3-bis-[5-(2-pyridyl)-1H-1,2,4-triazol-3-yl]benzene, 1,4-bis-[5-(2-pyridyl)-1H-1,2,4-triazol-3-yl]benzene, 2,5-bis-[5-(2-pyridyl)-1H-1,2,4-triazol-3-yl]thiophene, 2,5-bis-[5-pyrazinyl-1H-1,2,4-triazol-3-yl]thiophene are reported. Electrochemical studies indicate that in these systems, the ground state interaction is critically dependent on the nature of the bridging ligand and its protonation state, with strong and weak interactions being observed for thiophene- and phenylene-bridged complexes, respectively

    Koordinationschemie -gebundener Cyclopentadienyl-Chalkogeno-Ether

    Get PDF
    Coordination Chemistry of rr-Bonded Cyclopentadienyl Chalcogeno Ethers, I. - Chelate Complexes of Pentakis(methylthio)cymantrene with Metal Carbonyls [C5(SMe)5]Mn(CO)3 (1) reacts with W(CO)5(THF), Mo(CO)4(C7H8), Cr(CO)3(NCMe)3, and Re(CO)4(-C3H5)/HBF4 to yield the monochelate complexes [[C5(SMe)5]Mn(C0)3][M(CO)4] (M = W: 2; M = Mo: 3) and the dichelate complexes [[C5(SMe)5]Mn(CO)3][M(C0)4]2 (M = W: 4; M = Cr: 5; M = Re BFF4 : 6). The reaction with Mo(CO)3(p-xylene) in THF leads via unstable intermediates, which contain coordinated THF, to a mixture of 3 and [[C5(SMe)5]Mn(CO)3][Mo(CO)4]2 (7). The structures of 3 and 4 in the crystal have been determined by X-ray diffraction methods

    Metallkomplexe mit biologisch wichtigen Liganden, LXVIII

    Get PDF
    The trischelate complexes of the dianion of aspartic acid and -methylaspartic acid (5-C5Me5) (R = H, Me) form adducts with alkali iodides MI (M = Li, Na, K). The polymeric structure of (5-C5Me5)Co(L-asp.-2H+)KI (1c) was determined by X-ray diffraction. In the crystal of 1c the potassium ions are surrounded by five oxygen atoms of the carboxylate groups whereby two oxygen atoms form bridges between two K+ ions. Similarly, trischelate complexes 4 and 5 have been obtained from (5-C5Me5)Co(CO)I2 and 2,3-diaminopropionic, 2,4-diaminobutyric acid, and asparagine, respectively

    The modular synthesis of rare earth-transition metal heterobimetallic complexes utilizing a redox-active ligand

    Get PDF
    We report a robust and modular synthetic route to heterometallic rare earth-transition metal complexes. We have used the redox-active bridging ligand 1,10-phenathroline-5,6-dione (pd), which has selective N,N′ or O,O′ binding sites as the template for this synthetic route. The coordination complexes [Ln(hfac)3(N,N’-pd)] (Ln = Y [1], Gd [2]; hfac = hexafluoroacetylacetonate) were synthesised in high yield. These complexes have been fully characterised using a range of spectroscopic techniques. Solid state molecular structures of 1 and 2 have been determined by X-ray crystallography and display different pd binding modes in coordinating and non-coordinating solvents. Complexes 1 and 2 are unusually highly coloured in coordinating solvents, for example the vis-NIR spectrum of 1 in acetonitrile displays an electronic transition centred at 587 nm with an extinction coefficient consistent with significant charge transfer. The reaction between 1 and 2 and VCp2 or VCpt2 (Cpt = tetramethylcyclopentadienyl) resulted in the isolation of the heterobimetallic complexes, [Ln(hfac)3(N,N′-O,O′-pd)VCp2] (Ln = Y [3], Gd [4]) or [Ln(hfac)3(N,N′-O,O′-pd)VCpt2] (Ln = Y [5], Gd [6]). The solid state molecular structures of 3, 5 and 6 have been determined by X-ray crystallography. The spectroscopic data on 3–6 are consistent with oxidation of V(II) to V(IV) and reduction of pd to pd2− in the heterobimetallic complexes. The spin-Hamiltonian parameters from low temperature X-band EPR spectroscopy of 3 and 5 describe a 2A1 ground state, with a V(IV) centre. DFT calculations on 3 are in good agreement with experimental data and confirm the SOMO as the dx2−y2 orbital localised on vanadium

    Peripherally-metallated porphyrins: meso-n1-porphyrinyl-platinum(II) complexes of 5,15-diaryl- and 5,10,15-triarylporphyrins

    Get PDF
    Attempted metathesis reactions of peripherally-metallated meso-η1-porphyrinylplatinum(II) complexes such as trans-[PtBr(NiDPP)(PPh3)2] (H2DPP = 5,15-diphenylporphyrin) with organolithium reagents fail due to competitive addition at the porphyrin ring carbon opposite to the metal substituent. This reaction can be prevented by using 5,10,15-triarylporphyrins, e.g. 5,10,15-triphenylporphyrin (H2TrPP) and 5-phenyl-10,20-bis(3’,5’-di-t-butylphenyl)porphyrin (H2DAPP) as substrates. These triarylporphyrins are readily prepared using the method of Senge and co-workers by addition of phenyllithium to the appropriate 5,15-diarylporphyrins, followed by aqueous protolysis and oxidation. They are convenient, soluble building blocks for selective substitutions and subsequent transformations at the remaining free meso carbon. The sequence of bromination, optional central metallation and oxidative addition of Pt(0) tris(phosphine) complexes generates the organoplatinum porphyrins in high overall yields. The bromo ligand on the Pt(II) centre can be substituted by alkynyl nucleophiles, including 5-ethynylNiDPP, to form the first examples of meso-η1-porphyrinylplatinum(II) complexes with a second Pt-C bond. The range of porphyrinylplatinum(II) bis(tertiary phosphine) complexes was extended to the triethylphosphine analogues, by oxidative addition of H2TrPPBr to Pt(PEt3)3, and the initially-formed cis adduct is only slowly thermally transformed to trans-[PtBr(H2TrPP)(PEt3)2] 16. The molecular structures of NiDAPP 9b, trans-[Pt(NiDPP)(C2NiDPP)(PPh3)2] 14 and 16 were determined by X-ray crystallography
    corecore