739,568 research outputs found
Population Genetics of Rare Variants and Complex Diseases
Identifying drivers of complex traits from the noisy signals of genetic
variation obtained from high throughput genome sequencing technologies is a
central challenge faced by human geneticists today. We hypothesize that the
variants involved in complex diseases are likely to exhibit non-neutral
evolutionary signatures. Uncovering the evolutionary history of all variants is
therefore of intrinsic interest for complex disease research. However, doing so
necessitates the simultaneous elucidation of the targets of natural selection
and population-specific demographic history. Here we characterize the action of
natural selection operating across complex disease categories, and use
population genetic simulations to evaluate the expected patterns of genetic
variation in large samples. We focus on populations that have experienced
historical bottlenecks followed by explosive growth (consistent with most human
populations), and describe the differences between evolutionarily deleterious
mutations and those that are neutral. Genes associated with several complex
disease categories exhibit stronger signatures of purifying selection than
non-disease genes. In addition, loci identified through genome-wide association
studies of complex traits also exhibit signatures consistent with being in
regions recurrently targeted by purifying selection. Through simulations, we
show that population bottlenecks and rapid growth enables deleterious rare
variants to persist at low frequencies just as long as neutral variants, but
low frequency and common variants tend to be much younger than neutral
variants. This has resulted in a large proportion of modern-day rare alleles
that have a deleterious effect on function, and that potentially contribute to
disease susceptibility.Comment: 36 pages, 7 figure
Joint and individual analysis of breast cancer histologic images and genomic covariates
A key challenge in modern data analysis is understanding connections between
complex and differing modalities of data. For example, two of the main
approaches to the study of breast cancer are histopathology (analyzing visual
characteristics of tumors) and genetics. While histopathology is the gold
standard for diagnostics and there have been many recent breakthroughs in
genetics, there is little overlap between these two fields. We aim to bridge
this gap by developing methods based on Angle-based Joint and Individual
Variation Explained (AJIVE) to directly explore similarities and differences
between these two modalities. Our approach exploits Convolutional Neural
Networks (CNNs) as a powerful, automatic method for image feature extraction to
address some of the challenges presented by statistical analysis of
histopathology image data. CNNs raise issues of interpretability that we
address by developing novel methods to explore visual modes of variation
captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.
Our results provide many interpretable connections and contrasts between
histopathology and genetics
Bayesian computation via empirical likelihood
Approximate Bayesian computation (ABC) has become an essential tool for the
analysis of complex stochastic models when the likelihood function is
numerically unavailable. However, the well-established statistical method of
empirical likelihood provides another route to such settings that bypasses
simulations from the model and the choices of the ABC parameters (summary
statistics, distance, tolerance), while being convergent in the number of
observations. Furthermore, bypassing model simulations may lead to significant
time savings in complex models, for instance those found in population
genetics. The BCel algorithm we develop in this paper also provides an
evaluation of its own performance through an associated effective sample size.
The method is illustrated using several examples, including estimation of
standard distributions, time series, and population genetics models.Comment: 21 pages, 12 figures, revised version of the previous version with a
new titl
Combining agronomic and breeding approaches for improved nutrient use efficiency
There is a strong need to improve agricultural nutrient use efficiency (NUE), but NUE is complex, and not even well defined. The abstract and presentation deal with how NUE is determined by the combination of Genetic, Environmental and Management factors (GxExM), and how genetics as well as crop management must be combined in order to achieve improved overall NUE
Understanding of research, genetics and genetic research in a rapid ethical assessment in north west Cameroon
BACKGROUND
There is limited assessment of whether research participants in low-income settings are afforded a full understanding of the meaning of medical research. There may also be particular issues with the understanding of genetic research. We used a rapid ethical assessment methodology to explore perceptions surrounding the meaning of research, genetics and genetic research in north west Cameroon.
METHODS
Eleven focus group discussions (including 107 adults) and 72 in-depth interviews were conducted with various stakeholders in two health districts in north west Cameroon between February and April 2012.
RESULTS
Most participants appreciated the role of research in generating knowledge and identified a difference between research and healthcare but gave varied explanations as to this difference. Most participants' understanding of genetics was limited to concepts of hereditary, with potential benefits limited to the level of the individual or family. Explanations based on supernatural beliefs were identified as a special issue but participants tended not to identify any other special risks with genetic research.
CONCLUSION
We demonstrated a variable level of understanding of research, genetics and genetic research, with implications for those carrying out genetic research in this and other low resource settings. Our study highlights the utility of rapid ethical assessment prior to complex or sensitive research
Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach
Probing Plasmodium falciparum sexual commitment at the single-cell level
Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign
Gene expression drives the evolution of dominance.
Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels
Who Replaces Whom? Local versus Non-local Replacement in Social and Evolutionary Dynamics
In this paper, we inspect well-known population genetics and social dynamics
models. In these models, interacting individuals, while participating in a
self-organizing process, give rise to the emergence of complex behaviors and
patterns. While one main focus in population genetics is on the adaptive
behavior of a population, social dynamics is more often concerned with the
splitting of a connected array of individuals into a state of global
polarization, that is, the emergence of speciation. Applying computational and
mathematical tools we show that the way the mechanisms of selection,
interaction and replacement are constrained and combined in the modeling have
an important bearing on both adaptation and the emergence of speciation.
Differently (un)constraining the mechanism of individual replacement provides
the conditions required for either speciation or adaptation, since these
features appear as two opposing phenomena, not achieved by one and the same
model. Even though natural selection, operating as an external, environmental
mechanism, is neither necessary nor sufficient for the creation of speciation,
our modeling exercises highlight the important role played by natural selection
in the interplay of the evolutionary and the self-organization modeling
methodologies.Comment: 14 pages, 11 figure
- …
