423,572 research outputs found

    Reduced spectral synthesis and compact operator synthesis

    Full text link
    We introduce and study the notion of reduced spectral synthesis, which unifies the concepts of spectral synthesis and uniqueness in locally compact groups. We exhibit a number of examples and prove that every non-discrete locally compact group with an open abelian subgroup has a subset that fails reduced spectral synthesis. We introduce compact operator synthesis as an operator algebraic counterpart of this notion and link it with other exceptional sets in operator algebra theory, studied previously. We show that a closed subset EE of a second countable locally compact group GG satisfies reduced local spectral synthesis if and only if the subset E={(s,t):ts1E}E^* = \{(s,t) : ts^{-1}\in E\} of G×GG\times G satisfies compact operator synthesis. We apply our results to questions about the equivalence of linear operator equations with normal commuting coefficients on Schatten pp-classes.Comment: 43 page

    Noncommutative Residues and a Characterisation of the Noncommutative Integral

    Full text link
    We continue the study of the relationship between Dixmier traces and noncommutative residues initiated by A. Connes. The utility of the residue approach to Dixmier traces is shown by a characterisation of the noncommutative integral in Connes' noncommutative geometry (for a wide class of Dixmier traces) as a generalised limit of vector states associated to the eigenvectors of a compact operator (or an unbounded operator with compact resolvent), i.e. as a generalised quantum limit. Using the characterisation, a criteria involving the eigenvectors of a compact operator and the projections of a von Neumann subalgebra of bounded operators is given so that the noncommutative integral associated to the compact operator is normal, i.e. satisfies a monotone convergence theorem, for the von Neumann subalgebra.Comment: 15 page

    Gohberg lemma, compactness, and essential spectrum of operators on compact Lie groups

    Full text link
    In this paper we prove a version of the Gohberg lemma on compact Lie groups giving an estimate from below for the distance from a given operator to the set of compact operators on compact Lie groups. As a consequence, we prove several results on bounds for the essential spectrum and a criterion for an operator to be compact. The conditions are given in terms of the matrix-valued symbols of operators.Comment: 13 page

    A hyperbolic universal operator commuting with a compact operator

    Get PDF
    A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a non-trivial, quasinilpotent, injective, compact operator with dense range, but unlike other examples, it acts on the Bergman space instead of the Hardy space and this operator is associated with a `hyperbolic' composition operator
    corecore