226,726 research outputs found
Joint source-channel coding for a quantum multiple access channel
Suppose that two senders each obtain one share of the output of a classical,
bivariate, correlated information source. They would like to transmit the
correlated source to a receiver using a quantum multiple access channel. In
prior work, Cover, El Gamal, and Salehi provided a combined source-channel
coding strategy for a classical multiple access channel which outperforms the
simpler "separation" strategy where separate codebooks are used for the source
coding and the channel coding tasks. In the present paper, we prove that a
coding strategy similar to the Cover-El Gamal-Salehi strategy and a
corresponding quantum simultaneous decoder allow for the reliable transmission
of a source over a quantum multiple access channel, as long as a set of
information inequalities involving the Holevo quantity hold.Comment: 21 pages, v2: minor changes, accepted into Journal of Physics
Iteratively Decoded Irregular Variable Length Coding and Sphere-Packing Modulation-Aided Differential Space-Time Spreading
In this paper we consider serially concatenated and iteratively decoded Irregular Variable Length Coding (IrVLC) combined with precoded Differential Space-Time Spreading (DSTS) aided multidimensional Sphere Packing (SP) modulation designed for near-capacity joint source and channel coding. The IrVLC scheme comprises a number of component Variable Length Coding (VLC) codebooks having different coding rates for the sake of encoding particular fractions of the input source symbol stream. The relative length of these source-stream fractions can be chosen with the aid of EXtrinsic Information Transfer (EXIT) charts in order to shape the EXIT curve of the IrVLC codec, so that an open EXIT chart tunnel may be created even at low Eb/N0 values that are close to the capacity bound of the channel. These schemes are shown to be capable of operating within 0.9 dB of the DSTS-SP channel’s capacity bound using an average interleaver length of 113, 100 bits and an effective bandwidth efficiency of 1 bit/s/Hz, assuming ideal Nyquist filtering. By contrast, the equivalent-rate regular VLC-based benchmarker scheme was found to be capable of operating at 1.4 dB from the capacity bound, which is about 1.56 times the corresponding discrepancy of the proposed IrVLC-aided scheme
Iterative Quantization Using Codes On Graphs
We study codes on graphs combined with an iterative message passing algorithm
for quantization. Specifically, we consider the binary erasure quantization
(BEQ) problem which is the dual of the binary erasure channel (BEC) coding
problem. We show that duals of capacity achieving codes for the BEC yield codes
which approach the minimum possible rate for the BEQ. In contrast, low density
parity check codes cannot achieve the minimum rate unless their density grows
at least logarithmically with block length. Furthermore, we show that duals of
efficient iterative decoding algorithms for the BEC yield efficient encoding
algorithms for the BEQ. Hence our results suggest that graphical models may
yield near optimal codes in source coding as well as in channel coding and that
duality plays a key role in such constructions.Comment: 10 page
Coding Schemes for Achieving Strong Secrecy at Negligible Cost
We study the problem of achieving strong secrecy over wiretap channels at
negligible cost, in the sense of maintaining the overall communication rate of
the same channel without secrecy constraints. Specifically, we propose and
analyze two source-channel coding architectures, in which secrecy is achieved
by multiplexing public and confidential messages. In both cases, our main
contribution is to show that secrecy can be achieved without compromising
communication rate and by requiring only randomness of asymptotically vanishing
rate. Our first source-channel coding architecture relies on a modified wiretap
channel code, in which randomization is performed using the output of a source
code. In contrast, our second architecture relies on a standard wiretap code
combined with a modified source code termed uniform compression code, in which
a small shared secret seed is used to enhance the uniformity of the source code
output. We carry out a detailed analysis of uniform compression codes and
characterize the optimal size of the shared seed.Comment: 15 pages, two-column, 5 figures, accepted to IEEE Transactions on
Information Theor
The Finite Field Multi-Way Relay Channel with Correlated Sources: The Three-User Case
The three-user finite field multi-way relay channel with correlated sources
is considered. The three users generate possibly correlated messages, and each
user is to transmit its message to the two other users reliably in the Shannon
sense. As there is no direct link among the users, communication is carried out
via a relay, and the link from the users to the relay and those from the relay
to the users are finite field adder channels with additive noise of arbitrary
distribution. The problem is to determine the set of all possible achievable
rates, defined as channel uses per source symbol for reliable communication.
For two classes of source/channel combinations, the solution is obtained using
Slepian-Wolf source coding combined with functional-decode-forward channel
coding.Comment: to be presented at ISIT 201
On privacy amplification, lossy compression, and their duality to channel coding
We examine the task of privacy amplification from information-theoretic and
coding-theoretic points of view. In the former, we give a one-shot
characterization of the optimal rate of privacy amplification against classical
adversaries in terms of the optimal type-II error in asymmetric hypothesis
testing. This formulation can be easily computed to give finite-blocklength
bounds and turns out to be equivalent to smooth min-entropy bounds by Renner
and Wolf [Asiacrypt 2005] and Watanabe and Hayashi [ISIT 2013], as well as a
bound in terms of the divergence by Yang, Schaefer, and Poor
[arXiv:1706.03866 [cs.IT]]. In the latter, we show that protocols for privacy
amplification based on linear codes can be easily repurposed for channel
simulation. Combined with known relations between channel simulation and lossy
source coding, this implies that privacy amplification can be understood as a
basic primitive for both channel simulation and lossy compression. Applied to
symmetric channels or lossy compression settings, our construction leads to
proto- cols of optimal rate in the asymptotic i.i.d. limit. Finally, appealing
to the notion of channel duality recently detailed by us in [IEEE Trans. Info.
Theory 64, 577 (2018)], we show that linear error-correcting codes for
symmetric channels with quantum output can be transformed into linear lossy
source coding schemes for classical variables arising from the dual channel.
This explains a "curious duality" in these problems for the (self-dual) erasure
channel observed by Martinian and Yedidia [Allerton 2003; arXiv:cs/0408008] and
partly anticipates recent results on optimal lossy compression by polar and
low-density generator matrix codes.Comment: v3: updated to include equivalence of the converse bound with smooth
entropy formulations. v2: updated to include comparison with the one-shot
bounds of arXiv:1706.03866. v1: 11 pages, 4 figure
- …
