485,745 research outputs found

    Noisy Network Coding

    Full text link
    A noisy network coding scheme for sending multiple sources over a general noisy network is presented. For multi-source multicast networks, the scheme naturally extends both network coding over noiseless networks by Ahlswede, Cai, Li, and Yeung, and compress-forward coding for the relay channel by Cover and El Gamal to general discrete memoryless and Gaussian networks. The scheme also recovers as special cases the results on coding for wireless relay networks and deterministic networks by Avestimehr, Diggavi, and Tse, and coding for wireless erasure networks by Dana, Gowaikar, Palanki, Hassibi, and Effros. The scheme involves message repetition coding, relay signal compression, and simultaneous decoding. Unlike previous compress--forward schemes, where independent messages are sent over multiple blocks, the same message is sent multiple times using independent codebooks as in the network coding scheme for cyclic networks. Furthermore, the relays do not use Wyner--Ziv binning as in previous compress-forward schemes, and each decoder performs simultaneous joint typicality decoding on the received signals from all the blocks without explicitly decoding the compression indices. A consequence of this new scheme is that achievability is proved simply and more generally without resorting to time expansion to extend results for acyclic networks to networks with cycles. The noisy network coding scheme is then extended to general multi-source networks by combining it with decoding techniques for interference channels. For the Gaussian multicast network, noisy network coding improves the previously established gap to the cutset bound. We also demonstrate through two popular AWGN network examples that noisy network coding can outperform conventional compress-forward, amplify-forward, and hash-forward schemes.Comment: 33 pages, 4 figures, submitted to IEEE Transactions on Information Theor

    An Achievable Rate-Distortion Region for the Multiple Descriptions Problem

    Full text link
    A multiple-descriptions (MD) coding strategy is proposed and an inner bound to the achievable rate-distortion region is derived. The scheme utilizes linear codes. It is shown in two different MD set-ups that the linear coding scheme achieves a larger rate-distortion region than previously known random coding strategies. Furthermore, it is shown via an example that the best known random coding scheme for the set-up can be improved by including additional randomly generated codebooks

    Successive Wyner-Ziv Coding Scheme and its Application to the Quadratic Gaussian CEO Problem

    Full text link
    We introduce a distributed source coding scheme called successive Wyner-Ziv coding. We show that any point in the rate region of the quadratic Gaussian CEO problem can be achieved via the successive Wyner-Ziv coding. The concept of successive refinement in the single source coding is generalized to the distributed source coding scenario, which we refer to as distributed successive refinement. For the quadratic Gaussian CEO problem, we establish a necessary and sufficient condition for distributed successive refinement, where the successive Wyner-Ziv coding scheme plays an important role.Comment: 28 pages, submitted to the IEEE Transactions on Information Theor

    Compress-and-Estimate Source Coding for a Vector Gaussian Source

    Full text link
    We consider the remote vector source coding problem in which a vector Gaussian source is to be estimated from noisy linear measurements. For this problem, we derive the performance of the compress-and-estimate (CE) coding scheme and compare it to the optimal performance. In the CE coding scheme, the remote encoder compresses the noisy source observations so as to minimize the local distortion measure, independent from the joint distribution between the source and the observations. In reconstruction, the decoder estimates the original source realization from the lossy-compressed noisy observations. For the CE coding in the Gaussian vector case, we show that, if the code rate is less than a threshold, then the CE coding scheme attains the same performance as the optimal coding scheme. We also introduce lower and upper bounds for the performance gap above this threshold. In addition, an example with two observations and two sources is studied to illustrate the behavior of the performance gap

    Coding Scheme for Negative Utterances

    Get PDF
    This document contains an abbreviated version of a coding scheme employed for the pragmatic 2-coder analysis of negation types and their felicity. It was used for the coding of negative utterances originating from human-robot dialogues gathered in the experiments described in articles contained in the reference list. Some theoretical parts as well as sections on future work have been removed for space reasons. The complete scheme is contained in the author's thesis. The scheme was devised by the author who also acted as first coder. Additionally a second coder was employed, and those parts of the coding scheme handed to the latter as coding manual are marked as such.Downloa

    On the Capacity of Symmetric Gaussian Interference Channels with Feedback

    Full text link
    In this paper, we propose a new coding scheme for symmetric Gaussian interference channels with feedback based on the ideas of time-varying coding schemes. The proposed scheme improves the Suh-Tse and Kramer inner bounds of the channel capacity for the cases of weak and not very strong interference. This improvement is more significant when the signal-to-noise ratio (SNR) is not very high. It is shown theoretically and numerically that our coding scheme can outperform the Kramer code. In addition, the generalized degrees-of-freedom of our proposed coding scheme is equal to the Suh-Tse scheme in the strong interference case. The numerical results show that our coding scheme can attain better performance than the Suh-Tse coding scheme for all channel parameters. Furthermore, the simplicity of the encoding/decoding algorithms is another strong point of our proposed coding scheme compared with the Suh-Tse coding scheme. More importantly, our results show that an optimal coding scheme for the symmetric Gaussian interference channels with feedback can be achieved by using only marginal posterior distributions under a better cooperation strategy between transmitters.Comment: To appear in Proc. of IEEE International Symposium on Information Theory (ISIT), Hong Kong, June 14-19, 201
    corecore