747,337 research outputs found

    Network error correction with unequal link capacities

    Full text link
    This paper studies the capacity of single-source single-sink noiseless networks under adversarial or arbitrary errors on no more than z edges. Unlike prior papers, which assume equal capacities on all links, arbitrary link capacities are considered. Results include new upper bounds, network error correction coding strategies, and examples of network families where our bounds are tight. An example is provided of a network where the capacity is 50% greater than the best rate that can be achieved with linear coding. While coding at the source and sink suffices in networks with equal link capacities, in networks with unequal link capacities, it is shown that intermediate nodes may have to do coding, nonlinear error detection, or error correction in order to achieve the network error correction capacity

    Physical-layer Network Coding: A Random Coding Error Exponent Perspective

    Full text link
    In this work, we derive the random coding error exponent for the uplink phase of a two-way relay system where physical layer network coding (PNC) is employed. The error exponent is derived for the practical (yet sub-optimum) XOR channel decoding setting. We show that the random coding error exponent under optimum (i.e., maximum likelihood) PNC channel decoding can be achieved even under the sub-optimal XOR channel decoding. The derived achievability bounds provide us with valuable insight and can be used as a benchmark for the performance of practical channel-coded PNC systems employing low complexity decoders when finite-length codewords are used.Comment: Submitted to IEEE International Symposium on Information Theory (ISIT), 201

    Coding for reliable satellite communications

    Get PDF
    This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks

    Error-resilient performance of Dirac video codec over packet-erasure channel

    Get PDF
    Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel
    corecore