664,257 research outputs found

    The Global Evolution of Giant Molecular Clouds II: The Role of Accretion

    Get PDF
    We present virial models for the global evolution of giant molecular clouds. Focusing on the presence of an accretion flow, and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual giant molecular clouds. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50 - 200 Msun pc^-2, in good agreement with observations of giant molecular clouds in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of giant molecular clouds and associated young star clusters in the LMC and find good agreement between our model clouds and the observed relationship between H ii regions, young star clusters, and giant molecular clouds.Comment: 23 Pages, 9 Figures. Accepted to Ap

    New near-IR observations of mesospheric CO2 and H2O clouds on Mars

    Full text link
    Carbon dioxide clouds, which are speculated by models on solar and extra-solar planets, have been recently observed near the equator of Mars. The most comprehensive identification of Martian CO2 ice clouds has been obtained by the near-IR imaging spectrometer OMEGA. CRISM, a similar instrument with a higher spatial resolution, cannot detect these clouds with the same method due to its shorter wavelength range. Here we present a new method to detect CO2 clouds using near-IR data based on the comparison of H2O and CO2 ice spectral properties. The spatial and seasonal distributions of 54 CRISM observations containing CO2 clouds are reported, in addition to 17 new OMEGA observations. CRISM CO2 clouds are characterized by grain size in the 0.5-2\mum range and optical depths lower than 0.3. The distributions of CO2 clouds inferred from OMEGA and CRISM are consistent with each other and match at first order the distribution of high altitude (>60km) clouds derived from previous studies. At second order, discrepancies are observed. We report the identification of H2O clouds extending up to 80 km altitude, which could explain part of these discrepancies: both CO2 and H2O clouds can exist at high, mesospheric altitudes. CRISM observations of afternoon CO2 clouds display morphologies resembling terrestrial cirrus, which generalizes a previous result to the whole equatorial clouds season. Finally, we show that morning OMEGA observations have been previously misinterpreted as evidence for cumuliform, and hence potentially convective, CO2 clouds.Comment: Vincendon, M., C. Pilorget, B. Gondet, S. Murchie, and J.-P. Bibring (2011), New near-IR observations of mesospheric CO2 and H2O clouds on Mars, J. Geophys. Res., 116, E00J0

    The Launching of Cold Clouds by Galaxy Outflows II: The Role of Thermal Conduction

    Full text link
    We explore the impact of electron thermal conduction on the evolution of radiatively-cooled cold clouds embedded in flows of hot and fast material, as occur in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much-longer disruption times that are set by a balance between impinging thermal energy and evaporation. We provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows, in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clouds to present a small cross-section to the ambient flow. This means that either magnetic fields must suppress thermal conduction, or that the cold clouds observed in galaxy outflows are not formed of cold material carried out from the galaxy.Comment: accepted by Ap

    Primordial Star Formation under Far-ultraviolet radiation

    Full text link
    Thermal and chemical evolution of primordial gas clouds irradiated with far-ultraviolet (FUV; < 13.6 eV) radiation is investigated. In clouds irradiated by intense FUV radiation, sufficient hydrogen molecules to be important for cooling are never formed. However, even without molecular hydrogen, if the clouds are massive enough, they start collapsing via atomic hydrogen line cooling. Such clouds continue to collapse almost isothermally owing to successive cooling by H^{-} free-bound emission up to the number density of 10^{16} cm^{-3}. Inside the clouds, the Jeans mass eventually falls well below a solar mass. This indicates that hydrogen molecules are dispensable for low-mass primordial star formation, provided fragmentation of the clouds occurs at sufficiently high density.Comment: 32 pages and 9 figures. ApJ, in pres

    Do Giant Molecular Clouds Care About the Galactic Structure?

    Get PDF
    We investigate the impact of galactic environment on the properties of simulated giant molecular clouds formed in a M83-type barred spiral galaxy. Our simulation uses a rotating stellar potential to create the grand design features and resolves down to 1.5 pc. From the comparison of clouds found in the bar, spiral and disc regions, we find that the typical GMC is environment independent, with a mass of 5e+5 Msun and radius 11 pc. However, the fraction of clouds in the property distribution tails varies between regions, with larger, more massive clouds with a higher velocity dispersion being found in greatest proportions in the bar, spiral and then disc. The bar clouds also show a bimodality that is not reflected in the spiral and disc clouds except in the surface density, where all three regions show two distinct peaks. We identify these features as being due to the relative proportion of three cloud types, classified via the mass-radius scaling relation, which we label A, B and C. Type A clouds have the typical values listed above and form the largest fraction in each region. Type B clouds are massive giant molecular associations while Type C clouds are unbound, transient clouds that form in dense filaments and tidal tails. The fraction of each clouds type depends on the cloud-cloud interactions, which cause mergers to build up the GMA Type Bs and tidal features in which the Type C clouds are formed. The number of cloud interactions is greatest in the bar, followed by the spiral, causing a higher fraction of both cloud types compared to the disc. While the cloud types also exist in lower resolution simulations, their identification becomes more challenging as they are not well separated populations on the mass-radius relation or distribution plots. Finally, we compare the results for three star formation models to estimate the star formation rate and efficiency in each region.Comment: 21 pages, 14 figures. Accepted for publication in MNRA

    The effect of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies

    Full text link
    We study the effects of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies, in particular focusing on two model galaxies similar to IZw18 and NGC1569. We consider both scenarios, clouds put at the beginning of the simulation and continuously created infalling ones. Due to dynamical processes and thermal evaporation, the clouds survive only a few tens of Myr, but during this time they act as an additional cooling agent and the internal energy of cloudy models is typically reduced by 20 - 40% in comparison with models without clouds. The clouds delay the development of large-scale outflows, therefore helping to retain a larger amount of gas inside the galaxy. However, especially in models with continuous creation of infalling clouds, their bullet effect can pierce the expanding supershell and create holes through which the superbubble can vent freshly produced metals. Moreover, assuming a pristine chemical composition for the clouds, their interaction with the superbubble dilutes the gas, reducing the metallicity (by up to ~ 0.4 dex) with respect to the one attained by diffuse models.Comment: 3 pages, 3 figures, to be published in Astronomische Nachrichten (proceedings of Symposium 6 of the JENAM 2008, Vienna
    corecore