664,257 research outputs found
Recommended from our members
The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function
The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas and performing a monochromatic radiation calculation for each point. In this presentation it is shown that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K/day due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such that they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide, and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K/day can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K/day for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases
The Global Evolution of Giant Molecular Clouds II: The Role of Accretion
We present virial models for the global evolution of giant molecular clouds.
Focusing on the presence of an accretion flow, and accounting for the amount of
mass, momentum, and energy supplied by accretion and star formation feedback,
we are able to follow the growth, evolution, and dispersal of individual giant
molecular clouds. Our model clouds reproduce the scaling relations observed in
both galactic and extragalactic clouds. We find that accretion and star
formation contribute contribute roughly equal amounts of turbulent kinetic
energy over the lifetime of the cloud. Clouds attain virial equilibrium and
grow in such a way as to maintain roughly constant surface densities, with
typical surface densities of order 50 - 200 Msun pc^-2, in good agreement with
observations of giant molecular clouds in the Milky Way and nearby external
galaxies. We find that as clouds grow, their velocity dispersion and radius
must also increase, implying that the linewidth-size relation constitutes an
age sequence. Lastly, we compare our models to observations of giant molecular
clouds and associated young star clusters in the LMC and find good agreement
between our model clouds and the observed relationship between H ii regions,
young star clusters, and giant molecular clouds.Comment: 23 Pages, 9 Figures. Accepted to Ap
New near-IR observations of mesospheric CO2 and H2O clouds on Mars
Carbon dioxide clouds, which are speculated by models on solar and
extra-solar planets, have been recently observed near the equator of Mars. The
most comprehensive identification of Martian CO2 ice clouds has been obtained
by the near-IR imaging spectrometer OMEGA. CRISM, a similar instrument with a
higher spatial resolution, cannot detect these clouds with the same method due
to its shorter wavelength range. Here we present a new method to detect CO2
clouds using near-IR data based on the comparison of H2O and CO2 ice spectral
properties. The spatial and seasonal distributions of 54 CRISM observations
containing CO2 clouds are reported, in addition to 17 new OMEGA observations.
CRISM CO2 clouds are characterized by grain size in the 0.5-2\mum range and
optical depths lower than 0.3. The distributions of CO2 clouds inferred from
OMEGA and CRISM are consistent with each other and match at first order the
distribution of high altitude (>60km) clouds derived from previous studies. At
second order, discrepancies are observed. We report the identification of H2O
clouds extending up to 80 km altitude, which could explain part of these
discrepancies: both CO2 and H2O clouds can exist at high, mesospheric
altitudes. CRISM observations of afternoon CO2 clouds display morphologies
resembling terrestrial cirrus, which generalizes a previous result to the whole
equatorial clouds season. Finally, we show that morning OMEGA observations have
been previously misinterpreted as evidence for cumuliform, and hence
potentially convective, CO2 clouds.Comment: Vincendon, M., C. Pilorget, B. Gondet, S. Murchie, and J.-P. Bibring
(2011), New near-IR observations of mesospheric CO2 and H2O clouds on Mars,
J. Geophys. Res., 116, E00J0
The Launching of Cold Clouds by Galaxy Outflows II: The Role of Thermal Conduction
We explore the impact of electron thermal conduction on the evolution of
radiatively-cooled cold clouds embedded in flows of hot and fast material, as
occur in outflowing galaxies. Performing a parameter study of three-dimensional
adaptive mesh refinement hydrodynamical simulations, we show that electron
thermal conduction causes cold clouds to evaporate, but it can also extend
their lifetimes by compressing them into dense filaments. We distinguish
between low column-density clouds, which are disrupted on very short times, and
high-column density clouds with much-longer disruption times that are set by a
balance between impinging thermal energy and evaporation. We provide fits to
the cloud lifetimes and velocities that can be used in galaxy-scale simulations
of outflows, in which the evolution of individual clouds cannot be modeled with
the required resolution. Moreover, we show that the clouds are only accelerated
to a small fraction of the ambient velocity because compression by evaporation
causes the clouds to present a small cross-section to the ambient flow. This
means that either magnetic fields must suppress thermal conduction, or that the
cold clouds observed in galaxy outflows are not formed of cold material carried
out from the galaxy.Comment: accepted by Ap
Primordial Star Formation under Far-ultraviolet radiation
Thermal and chemical evolution of primordial gas clouds irradiated with
far-ultraviolet (FUV; < 13.6 eV) radiation is investigated. In clouds
irradiated by intense FUV radiation, sufficient hydrogen molecules to be
important for cooling are never formed. However, even without molecular
hydrogen, if the clouds are massive enough, they start collapsing via atomic
hydrogen line cooling. Such clouds continue to collapse almost isothermally
owing to successive cooling by H^{-} free-bound emission up to the number
density of 10^{16} cm^{-3}. Inside the clouds, the Jeans mass eventually falls
well below a solar mass. This indicates that hydrogen molecules are dispensable
for low-mass primordial star formation, provided fragmentation of the clouds
occurs at sufficiently high density.Comment: 32 pages and 9 figures. ApJ, in pres
Do Giant Molecular Clouds Care About the Galactic Structure?
We investigate the impact of galactic environment on the properties of
simulated giant molecular clouds formed in a M83-type barred spiral galaxy. Our
simulation uses a rotating stellar potential to create the grand design
features and resolves down to 1.5 pc. From the comparison of clouds found in
the bar, spiral and disc regions, we find that the typical GMC is environment
independent, with a mass of 5e+5 Msun and radius 11 pc. However, the fraction
of clouds in the property distribution tails varies between regions, with
larger, more massive clouds with a higher velocity dispersion being found in
greatest proportions in the bar, spiral and then disc. The bar clouds also show
a bimodality that is not reflected in the spiral and disc clouds except in the
surface density, where all three regions show two distinct peaks. We identify
these features as being due to the relative proportion of three cloud types,
classified via the mass-radius scaling relation, which we label A, B and C.
Type A clouds have the typical values listed above and form the largest
fraction in each region. Type B clouds are massive giant molecular associations
while Type C clouds are unbound, transient clouds that form in dense filaments
and tidal tails. The fraction of each clouds type depends on the cloud-cloud
interactions, which cause mergers to build up the GMA Type Bs and tidal
features in which the Type C clouds are formed. The number of cloud
interactions is greatest in the bar, followed by the spiral, causing a higher
fraction of both cloud types compared to the disc. While the cloud types also
exist in lower resolution simulations, their identification becomes more
challenging as they are not well separated populations on the mass-radius
relation or distribution plots. Finally, we compare the results for three star
formation models to estimate the star formation rate and efficiency in each
region.Comment: 21 pages, 14 figures. Accepted for publication in MNRA
The effect of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies
We study the effects of clouds on the dynamical and chemical evolution of
gas-rich dwarf galaxies, in particular focusing on two model galaxies similar
to IZw18 and NGC1569. We consider both scenarios, clouds put at the beginning
of the simulation and continuously created infalling ones. Due to dynamical
processes and thermal evaporation, the clouds survive only a few tens of Myr,
but during this time they act as an additional cooling agent and the internal
energy of cloudy models is typically reduced by 20 - 40% in comparison with
models without clouds. The clouds delay the development of large-scale
outflows, therefore helping to retain a larger amount of gas inside the galaxy.
However, especially in models with continuous creation of infalling clouds,
their bullet effect can pierce the expanding supershell and create holes
through which the superbubble can vent freshly produced metals. Moreover,
assuming a pristine chemical composition for the clouds, their interaction with
the superbubble dilutes the gas, reducing the metallicity (by up to ~ 0.4 dex)
with respect to the one attained by diffuse models.Comment: 3 pages, 3 figures, to be published in Astronomische Nachrichten
(proceedings of Symposium 6 of the JENAM 2008, Vienna
- …
