42,467 research outputs found

    Cloud and Shadow Detection in Satellite Imagery

    Get PDF
    V posledních letech došlo k enormnímu nárůstu veřejně dostupných satelitních snímků a celkového množství vynešených satelitů, což předložilo náročný problém s daty, jak označit nebo klasifikovat objekty na satelitních snímcích. Tato práce uvede algoritmus Fmask[1], state of the art řešení, detekce mraků a stínů, a zkoumá problém syntézy družicových dat a problém sémantického značení družicových snímků návrhem, provedením a vyhodnocením neuronové sítě. Výsledný algoritmus syntetizuje obraz na oblaka a zem, které lze kombinovat s jakýmkoliv jiným obrázkem, a tím se vytvoří nová nebo vylepšená stávající data. Hlavním přínosem této diplomové práce je využití syntézy datasetu při učení neuronových sítí. Na skutečném datasetu jsme dosáhli 94.3% přesnosti (accuracy). Neuronové sítě byly vytvořeny za pomoci knihovny Caffe[2].In recent years there has been an enormous growth in the amount of publicly available satellite imagery and overall satellites launched, which has imposed a challenging data problem of how to label or classify objects on satellite imagery. This thesis reviews Fmask algorithm[1], a state of the art solution, of cloud and shadow detection, and explores a problem of synthesizing satellite data and a problem of semantic labelling of satellite imagery by designing, implementing and evaluating neural network. The resulting pipeline synthesizes image into clouds and background. The modelled clouds can be then combined with any other image creating a new or enhanced data. The main contribution of this thesis is the utilization of the dataset synthesis in learning of neural networks. We have achieved 94.3% střídavý on a real world dataset. Neural networks were created with a help of Caffe framework[2]

    H31G-1596: DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    Get PDF
    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remote sensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud shadow mask from geostationary satellite data is critical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds,which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classify cloudshadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoderdecoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multispectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions

    Land Cover Classification from Multi-temporal, Multi-spectral Remotely Sensed Imagery using Patch-Based Recurrent Neural Networks

    Full text link
    Sustainability of the global environment is dependent on the accurate land cover information over large areas. Even with the increased number of satellite systems and sensors acquiring data with improved spectral, spatial, radiometric and temporal characteristics and the new data distribution policy, most existing land cover datasets were derived from a pixel-based single-date multi-spectral remotely sensed image with low accuracy. To improve the accuracy, the bottleneck is how to develop an accurate and effective image classification technique. By incorporating and utilizing the complete multi-spectral, multi-temporal and spatial information in remote sensing images and considering their inherit spatial and sequential interdependence, we propose a new patch-based RNN (PB-RNN) system tailored for multi-temporal remote sensing data. The system is designed by incorporating distinctive characteristics in multi-temporal remote sensing data. In particular, it uses multi-temporal-spectral-spatial samples and deals with pixels contaminated by clouds/shadow present in the multi-temporal data series. Using a Florida Everglades ecosystem study site covering an area of 771 square kilo-meters, the proposed PB-RNN system has achieved a significant improvement in the classification accuracy over pixel-based RNN system, pixel-based single-imagery NN system, pixel-based multi-images NN system, patch-based single-imagery NN system and patch-based multi-images NN system. For example, the proposed system achieves 97.21% classification accuracy while a pixel-based single-imagery NN system achieves 64.74%. By utilizing methods like the proposed PB-RNN one, we believe that much more accurate land cover datasets can be produced over large areas efficiently
    corecore