91,559 research outputs found
3D Point Capsule Networks
In this paper, we propose 3D point-capsule networks, an auto-encoder designed
to process sparse 3D point clouds while preserving spatial arrangements of the
input data. 3D capsule networks arise as a direct consequence of our novel
unified 3D auto-encoder formulation. Their dynamic routing scheme and the
peculiar 2D latent space deployed by our approach bring in improvements for
several common point cloud-related tasks, such as object classification, object
reconstruction and part segmentation as substantiated by our extensive
evaluations. Moreover, it enables new applications such as part interpolation
and replacement
Separation of convective and stratiform precipitation for a precipitation analysis of the local model of the German Weather Service
An improved independent precipitation data set with the horizontal resolution of 7×7 km grid over central Europe was generated (Free University of Berlin (FUB)-precipitation analysis). For scale dependent evaluation of the Local model (LM) of the German Weather service, the precipitation data were separated into convective and stratiform fractions. To analyse precipitation amounts an interpolation scheme is used which contains the data set of "present weather" (ww), rain gauges and cloud types from the WMO-network in hourly resolution from the year 1992 until 2004 together with satellite cloud types derived from Meteosat-7 data. The structural analyses of cloud classes from satellite data as well as clouds from the synoptic observations were used to develop a statistical interpolation procedure to build up an independent precipitation analysis in resolution corresponding to the LM grid
Extension of the Finite Integration Technique including dynamic mesh refinement and its application to self-consistent beam dynamics simulations
An extension of the framework of the Finite Integration Technique (FIT)
including dynamic and adaptive mesh refinement is presented. After recalling
the standard formulation of the FIT, the proposed mesh adaptation procedure is
described. Besides the linear interpolation approach, a novel interpolation
technique based on specialized spline functions for approximating the discrete
electromagnetic field solution during mesh adaptation is introduced. The
standard FIT on a fixed mesh and the new adaptive approach are applied to a
simulation test case with known analytical solution. The numerical accuracy of
the two methods are shown to be comparable. The dynamic mesh approach is,
however, much more efficient. This is also demonstrated for the full scale
modeling of the complete RF gun at the Photo Injector Test Facility DESY
Zeuthen (PITZ) on a single computer. Results of a detailed design study
addressing the effects of individual components of the gun onto the beam
emittance using a fully self-consistent approach are presented.Comment: 33 pages, 14 figures, 4 table
3D Point Capsule Networks
In this paper, we propose 3D point-capsule networks, an auto-encoder designed
to process sparse 3D point clouds while preserving spatial arrangements of the
input data. 3D capsule networks arise as a direct consequence of our novel
unified 3D auto-encoder formulation. Their dynamic routing scheme and the
peculiar 2D latent space deployed by our approach bring in improvements for
several common point cloud-related tasks, such as object classification, object
reconstruction and part segmentation as substantiated by our extensive
evaluations. Moreover, it enables new applications such as part interpolation
and replacement.Comment: As published in CVPR 2019 (camera ready version), with supplementary
materia
Rainfall forecasting using a simple advected cloud model with weather radar, satellite infra-red and surface weather observations: an initial appraisal under UK conditions
- …
