609,386 research outputs found
Quantum control theory and applications: A survey
This paper presents a survey on quantum control theory and applications from
a control systems perspective. Some of the basic concepts and main developments
(including open-loop control and closed-loop control) in quantum control theory
are reviewed. In the area of open-loop quantum control, the paper surveys the
notion of controllability for quantum systems and presents several control
design strategies including optimal control, Lyapunov-based methodologies,
variable structure control and quantum incoherent control. In the area of
closed-loop quantum control, the paper reviews closed-loop learning control and
several important issues related to quantum feedback control including quantum
filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective,
some references are added, published versio
Recommended from our members
The boomerang returns? Accounting for the impact of uncertainties on the dynamics of remanufacturing systems
Recent years have witnessed companies abandon traditional open-loop supply chain structures in favour of closed-loop variants, in a bid to mitigate environmental impacts and exploit economic opportunities. Central to the closed-loop paradigm is remanufacturing: the restoration of used products to useful life. While this operational model has huge potential to extend product life-cycles, the collection and recovery processes diminish the effectiveness of existing control mechanisms for open-loop systems. We systematically review the literature in the field of closed-loop supply chain dynamics, which explores the time-varying interactions of material and information flows in the different elements of remanufacturing supply chains. We supplement this with further reviews of what we call the three ‘pillars’ of such systems, i.e. forecasting, collection, and inventory and production control. This provides us with an interdisciplinary lens to investigate how a ‘boomerang’ effect (i.e. sale, consumption, and return processes) impacts on the behaviour of the closed-loop system and to understand how it can be controlled. To facilitate this, we contrast closed-loop supply chain dynamics research to the well-developed research in each pillar; explore how different disciplines have accommodated the supply, process, demand, and control uncertainties; and provide insights for future research on the dynamics of remanufacturing systems
AER-based robotic closed-loop control system
Address-Event-Representation (AER) is an
asynchronous protocol for transferring the information of
spiking neuro-inspired systems. Actually AER systems are able
to see, to ear, to process information, and to learn. Regarding to
the actuation step, the AER has been used for implementing
Central Pattern Generator algorithms, but not for controlling
the actuators in a closed-loop spike-based way. In this paper we
analyze an AER based model for a real-time neuro-inspired
closed-loop control system. We demonstrate it into a differential
control system for a two-wheel vehicle using feedback AER
information. PFM modulation has been used to power the DC
motors of the vehicle and translation into AER of encoder
information is also presented for the close-loop. A codesign
platform (called AER-Robot), based into a Xilinx Spartan 3
FPGA and an 8051 USB microcontroller, with power stages for
four DC motors has been used for the demonstrator.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-0
Microflow valve control system design
A design synthesis for a microflow control system is presented based on the interrogation of an analytical model, testing, and observation. The key issues relating to controlling a microflow using a variable geometry flow channel are explored through the implementation and testing of open and closed-loop control systems. The reliance of closed-loop systems on accurate flow measurement and the need for an open-loop strategy are covered. A valve and control system capable of accurately controlling flowrates between 0.09 and 400 ml/h and with a range of 900:1 is demonstrated
New slip control system considering actuator dynamics
A new control strategy for wheel slip control, considering the complete dynamics of the electro-hydraulic brake (EHB) system, is developed and experimentally validated in Cranfield University's HiL system. The control system is based on closed loop shaping Youla-parameterization method. The plant model is linearized about the nominal operating point, a Youla parameter is defined for all stabilizing feedback controller and control performance is achieved by employing closed loop shaping technique. The stability and performance of the controller are investigated in frequency and time domain, and verified by experiments using real EHB smart actuator fitted into the HiL system with driver in the loop
- …
