1,868,313 research outputs found
Clinical application of penicillin
Mostly reprintsIncludes bibliographical references.10 pts. in 1 v.Title page and introduction only. The complete thesis in print form is available from the University Library.Thesis (M.D.)--University of Adelaide, Dept. of Medicin
Personalised mobile services supporting the implementation of clinical guidelines
Telemonitoring is emerging as a compelling application of Body Area Networks (BANs). We describe two health BAN systems developed respectively by a European team and an Australian team and discuss some issues encountered relating to formalization of clinical knowledge to support real-time analysis and interpretation of BAN data. Our example application is an evidence-based telemonitoring and teletreatment application for home-based rehabilitation. The application is intended to support implementation of a clinical guideline for cardiac rehabilitation following myocardial infarction. In addition to this the proposal is to establish the patient’s individual baseline risk profile and, by real-time analysis of BAN data, continually re-assess the current risk level in order to give timely personalised feedback. Static and dynamic risk factors are derived from literature. Many sources express evidence probabilistically, suggesting a requirement for reasoning with uncertainty; elsewhere evidence requires qualitative reasoning: both familiar modes of reasoning in KBSs. However even at this knowledge acquisition stage some issues arise concerning how best to apply the clinical evidence. Furthermore, in cases where insufficient clinical evidence is currently available, telemonitoring can yield large collections of clinical data with the potential for data mining in order to furnish more statistically powerful and accurate clinical evidence
Clinical application of high throughput molecular screening techniques for pharmacogenomics.
Genetic analysis is one of the fastest-growing areas of clinical diagnostics. Fortunately, as our knowledge of clinically relevant genetic variants rapidly expands, so does our ability to detect these variants in patient samples. Increasing demand for genetic information may necessitate the use of high throughput diagnostic methods as part of clinically validated testing. Here we provide a general overview of our current and near-future abilities to perform large-scale genetic testing in the clinical laboratory. First we review in detail molecular methods used for high throughput mutation detection, including techniques able to monitor thousands of genetic variants for a single patient or to genotype a single genetic variant for thousands of patients simultaneously. These methods are analyzed in the context of pharmacogenomic testing in the clinical laboratories, with a focus on tests that are currently validated as well as those that hold strong promise for widespread clinical application in the near future. We further discuss the unique economic and clinical challenges posed by pharmacogenomic markers. Our ability to detect genetic variants frequently outstrips our ability to accurately interpret them in a clinical context, carrying implications both for test development and introduction into patient management algorithms. These complexities must be taken into account prior to the introduction of any pharmacogenomic biomarker into routine clinical testing
- …
