425,747 research outputs found

    Deep Character-Level Click-Through Rate Prediction for Sponsored Search

    Full text link
    Predicting the click-through rate of an advertisement is a critical component of online advertising platforms. In sponsored search, the click-through rate estimates the probability that a displayed advertisement is clicked by a user after she submits a query to the search engine. Commercial search engines typically rely on machine learning models trained with a large number of features to make such predictions. This is inevitably requires a lot of engineering efforts to define, compute, and select the appropriate features. In this paper, we propose two novel approaches (one working at character level and the other working at word level) that use deep convolutional neural networks to predict the click-through rate of a query-advertisement pair. Specially, the proposed architectures only consider the textual content appearing in a query-advertisement pair as input, and produce as output a click-through rate prediction. By comparing the character-level model with the word-level model, we show that language representation can be learnt from scratch at character level when trained on enough data. Through extensive experiments using billions of query-advertisement pairs of a popular commercial search engine, we demonstrate that both approaches significantly outperform a baseline model built on well-selected text features and a state-of-the-art word2vec-based approach. Finally, by combining the predictions of the deep models introduced in this study with the prediction of the model in production of the same commercial search engine, we significantly improve the accuracy and the calibration of the click-through rate prediction of the production system.Comment: SIGIR2017, 10 page

    Following the Money: How the 50 States Rate in Providing Online Access to Government Spending Data

    Get PDF
    Grades states' efforts to provide public spending data through Web portals; lists the benefits of "transparency 2.0," including cost-efficient and targeted spending; and outlines best practices for comprehensive, one-stop, one-click searchable sites

    You Must Have Clicked on this Ad by Mistake! Data-Driven Identification of Accidental Clicks on Mobile Ads with Applications to Advertiser Cost Discounting and Click-Through Rate Prediction

    Full text link
    In the cost per click (CPC) pricing model, an advertiser pays an ad network only when a user clicks on an ad; in turn, the ad network gives a share of that revenue to the publisher where the ad was impressed. Still, advertisers may be unsatisfied with ad networks charging them for "valueless" clicks, or so-called accidental clicks. [...] Charging advertisers for such clicks is detrimental in the long term as the advertiser may decide to run their campaigns on other ad networks. In addition, machine-learned click models trained to predict which ad will bring the highest revenue may overestimate an ad click-through rate, and as a consequence negatively impacting revenue for both the ad network and the publisher. In this work, we propose a data-driven method to detect accidental clicks from the perspective of the ad network. We collect observations of time spent by users on a large set of ad landing pages - i.e., dwell time. We notice that the majority of per-ad distributions of dwell time fit to a mixture of distributions, where each component may correspond to a particular type of clicks, the first one being accidental. We then estimate dwell time thresholds of accidental clicks from that component. Using our method to identify accidental clicks, we then propose a technique that smoothly discounts the advertiser's cost of accidental clicks at billing time. Experiments conducted on a large dataset of ads served on Yahoo mobile apps confirm that our thresholds are stable over time, and revenue loss in the short term is marginal. We also compare the performance of an existing machine-learned click model trained on all ad clicks with that of the same model trained only on non-accidental clicks. There, we observe an increase in both ad click-through rate (+3.9%) and revenue (+0.2%) on ads served by the Yahoo Gemini network when using the latter. [...

    Tuning an Online Shop: Consumer Reactions to E-tailers' Service Quality

    Get PDF
    This paper investigates the impact of service quality in e-tailing on site visits and consumer demand (approximated by the last-click- through concept). We use a large representative data set obtained from a price-comparison site which covers most of the national (Austrian) market on e-tailing. Customers' valuations for a broad range of 15 dif- ferent service characteristics are condensed by factor analysis. Negative binomial regressions analysis is used to measure the impact of princi- pal factors for service quality on referral requests to online shops and last-click-throughs for different product categories.e-commerce, price comparison, horizontal service differentiation

    Data Sketches for Disaggregated Subset Sum and Frequent Item Estimation

    Full text link
    We introduce and study a new data sketch for processing massive datasets. It addresses two common problems: 1) computing a sum given arbitrary filter conditions and 2) identifying the frequent items or heavy hitters in a data set. For the former, the sketch provides unbiased estimates with state of the art accuracy. It handles the challenging scenario when the data is disaggregated so that computing the per unit metric of interest requires an expensive aggregation. For example, the metric of interest may be total clicks per user while the raw data is a click stream with multiple rows per user. Thus the sketch is suitable for use in a wide range of applications including computing historical click through rates for ad prediction, reporting user metrics from event streams, and measuring network traffic for IP flows. We prove and empirically show the sketch has good properties for both the disaggregated subset sum estimation and frequent item problems. On i.i.d. data, it not only picks out the frequent items but gives strongly consistent estimates for the proportion of each frequent item. The resulting sketch asymptotically draws a probability proportional to size sample that is optimal for estimating sums over the data. For non i.i.d. data, we show that it typically does much better than random sampling for the frequent item problem and never does worse. For subset sum estimation, we show that even for pathological sequences, the variance is close to that of an optimal sampling design. Empirically, despite the disadvantage of operating on disaggregated data, our method matches or bests priority sampling, a state of the art method for pre-aggregated data and performs orders of magnitude better on skewed data compared to uniform sampling. We propose extensions to the sketch that allow it to be used in combining multiple data sets, in distributed systems, and for time decayed aggregation
    corecore