36,197 research outputs found
Oxygen reduction in acid media on supported iron naphthalocyanine: Effect of isomer configuration and pyrolysis
O2 reduction in H2SO4 medium has been investigated on FeNPc impregnations on Norit BrX by the rotating disk electrode technique. Important differences in activity and stability were found between the 1,2- and 2,3-FeNPc isomers (pyrolysed or not). XPS analyses show, for the most inactive sample, strong demetallation and nitrogen losses. This phenomenon can be attributed to the differences in flexibility between the FeNPc isomers, which influences their stabilization on the substrate
Immuno Magnetic Thermosensitive Liposomes For Cancer Therapy
The present work describes the encapsulation of the drug doxorubicin (DOX) in immuno paramagnetic thermosensitive liposomes. DOX is the most common chemotherapeutic agent for the treatment of a variety of carcinomas. However, the pure drug has high cytotoxicity and therefore requires a targeted and biocompatible delivery system.
The introduction includes concepts, modalities, and functionalities of the project. First, a detailed description of the cell type (triple-negative breast cancer) is given. Furthermore, the importance of liposomal doxorubicin is explained and the current state of research is shown. The importance of modification to achieve thermosensitive properties and the procedure for co-encapsulation with Gd chelate to achieve paramagnetic properties is also discussed. In addition, the first part describes the surface modification with ADAM8 antibodies, which leads to improved targeting.
The second part of the thesis covers the different materials and methods used in this paper. The production of the liposomes LipTS, LipTS-GD, LipTS-GD-CY, LipTS-GD-CY-MAB and the loading of DOX using an ammonium sulfate gradient method were described in detail.
The results part deals with the physicochemical characterization using dynamic light scattering and laser Doppler velocimetry, which confirmed a uniform monodisperse distribution of the liposomes. These properties facilitate the approach of liposomes to target cancer cells. The influence of lipid composition of liposomes, co-encapsulation with Gd chelate and surface modification of liposomes was evaluated and described accordingly. The size and structure of the individual liposomal formulations were determined by atomic force microscopy and transmission electron microscopy. Morphological examination of the liposomes confirmed agreement with the sizes obtained by dynamic light scattering. Temperature-dependent AFM images showed an intact liposome structure at 37 °C, whereas heating by UHF-MRI led to a lipid film indicating the destruction of the lipid bilayer. Furthermore, TEM images showed the morphological properties of the liposomes and gave a more precise indication of how Gd-chelate accumulates within the liposomes. Liposomes with Gd-chelate showed well-separated vesicles, suggesting that Gd- chelate is deposited in the lipid bilayer of the liposomes. Gd was encapsulated in the hydrophilic core whereas chelate was extended into the lipid bilayer.
By differential scanning calorimetry and drug release, the heat-sensitive functionality of the liposomes could be determined. Liposomes showed a beginning of phase transition temperature at about 38 °C, which can be achieved by UHF-MRI exposure. The maximum phase transition temperature in the case of LipTS-GD and LipTS-GD-CY-MAB was 42 °C and 40 °C, respectively. A proof of concept study for the thermosensitive properties of liposomes and a time-dependent DOX release profile in hyperthermia was performed.
Gd-chelate is encapsulated in both LipTS-GD and LipTS-GD-CY-MAB and led to paramagnetic properties of the liposomes. This facilitates imaging mediated DOX delivery and diagnosis of the solid tumor and metastatic cells. The change in relaxation rate R1 of liposomes was quantified before and after heating above Tm (T> Tm). The relaxivity of the liposomes was obtained from the adapted slope of the relaxation rate against the Gd concentration. Remarkably, the relaxation rate and relaxivity increased after heating the liposomes above Tm (T> Tm), suggesting that the liposomes opened, released Gd chelate, and the exchange of water molecules became faster and more practicable.
Toxicity studies describe the different mechanisms for induced DOX toxicity. The increased cytotoxic effect at elevated temperatures showed that the induced toxicity is thermally dependent, i.e. DOX was released from the liposomes. The high viability of the cells at 37 °C indicates that the liposomes were intact at normal physiological temperatures. Under UHF-MRI treatment, cell toxicity due to elevated temperature was observed. The cellular uptake of liposomes under UHF-MRI was followed by a confocal laser scanning microscope. An increase in fluorescence intensity was observed after UHF-MRI exposure. The study of the uptake pathway showed that the majority of liposomes were mainly uptake by clathrin-mediated endocytosis.
In addition, the liposomes were modified with anti-ADAM8 antibodies (MAB 1031) to allow targeted delivery. The cellular binding capabilities of surface-modified and non-modified liposomes were tested on cells that had ADAM8 overexpression and on ADAM8 knockdown cells. Surface-modified liposomes showed a significant increase in binding ability, indicating significant targeting against cells that overexpress ADAM8 on their surface. In addition, cells with knockdown ADAM8 could not bind a significant amount of modified liposomes.
The biocompatibility of liposomes was assessed using a hemolysis test, which showed neglected hemolytic potential and an activated thromboplastin time (aPTT), where liposomes showed minimal interference with blood clotting. Hemocompatibility studies may help to understand the correlation between in vitro and in vivo.
The chorioallantois model was used in ovo to evaluate systematic biocompatibility in an alternative animal model. In the toxicity test, liposomes were injected intravenously into the chicken embryo. The liposomes showed a neglectable harmful effect on embryo survival. While free DOX has a detrimental effect on the survival of chicken embryos, this confirms the safety profile of liposomes compared to free DOX. LipTS-GD-CY-MAB were injected into the vascular system of the chicken embryo on egg development day 11 and scanned under UHF-MRI to evaluate the magnetic properties of the liposomes in a biological system with T2-weighted images (3D). The liposomal formulation had distinct magnetic properties under UHF MRI and the chick survived the scan.
In summary, immunomagnetic heat-sensitive liposomes are a novel drug for the treatment of TNBC. It is used both for the diagnosis and therapy of solid and metastasizing tumors without side effects on the neighboring tissue.
Furthermore, a tumor in the CAM model will be established. Thereafter, the selective targeting of the liposomes will be visualized and quantitated using fluorescence and UHF-MRI. Liposomes are yet to be tested on mice as a xenograft triple-negative breast cancer model, in which further investigation on the effect of DOX-LipTS-GD-CY-MAB is evaluated. On one hand, the liposomes will be evaluated regarding their targetability and their selective binding. On the other hand, the triggered release of DOX from the liposomes after UHF-MRI exposure will be quantitated, as well as evaluate the DOX-Liposomes therapeutic effect on the tumor
Perturbed angular correlation study of a haptenic molecule
The angular correlation of the 173-247 keV gamma-ray cascade after the electron-capture decay of (111)In is strongly perturbed when the I-p-nitrophenylethylenediaminetetraacetate chelate of (111)In(3+) is added to a solution containing rabbit antibody to dinitrophenyl groups. The radioactive chelate can be displaced by the addition of dinitrophenyllysine or unlabeled chelate. The average association constant between the antibody and the labeled chelate has been estimated from perturbed angular correlation measurements; this value is compared to the results of equilibrium dialysis. These experiments provide good evidence that information concerning macromolecular behavior can be obtained from perturbed angular correlation experiments that use chemically specific labels
From Zn to Mn: the study of novel manganese-binding groups in the search for new drugs against tuberculosis.
In most eubacteria, apicomplexans, and most plants, including the causal agents for diseases such as malaria, leprosy, and tuberculosis, the methylerythritol phosphate pathway is the route for the biosynthesis of the C(5) precursors to the essential isoprenoid class of compounds. Owing to their absence in humans, the enzymes of the methylerythritol phosphate pathway have become attractive targets for drug discovery. This work investigates a new class of inhibitors against the second enzyme of the pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Inhibition of this enzyme may involve the chelation of a crucial active site Mn ion, and the metal-chelating moieties studied here have previously been shown to be successful in application to the zinc-dependent metalloproteinases. Quantum mechanics and docking calculations presented in this work suggest the transferability of these metal-chelating compounds to Mn-containing 1-deoxy-D-xylulose 5-phosphate reductoisomerase enzyme, as a promising starting point to the development of potent inhibitors
Modulation of iron responsive gene expression and enzymatic activities in response to changes of the iron nutritional status in _Cucumis sativus_ L.
Regulation exerted by the iron status of the plant on the iron deficiency responses was investigated in cucumber roots (_Cucumis sativus_ L.) both at the biochemical and molecular level. Absence of iron induced the expression of the CsFRO1, CsIRT1, CsHA1 and the Cspepc1 transcripts that was followed by an increase in the corresponding enzymatic activities. Supply of iron repressed gene expression, in particular those of the Fe(III)-chelate reductase and for the high affinity iron transporter and reduce the enzymatic activities. Our results confirm and extend the hypothesis of a coordinate regulation of these responses. Besides these two activities strictly correlated with iron deficiency adaptation, we considered also the H+-ATPase and the phosphoenolpyruvate carboxylase, that have been shown to be involved in this response
LC-MS characterization and cell-binding properties of chelate modified somatropin
Somatropin, a recombinant protein containing 191 amino acids, is derived from the endogenous human growth hormone, somatotropin. This protein is clinically used in children and adults with inadequate endogenous growth hormone to stimulate a normal bone and muscle growth. In addition, somatropin is recently being investigated for the diagnosis and radiotherapy of certain hormonal cancers. In some of these cancers, over-expression of the human growth hormone receptor (hGHR) is described.
The modification of the protein with a chelating agent like NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) allows the inclusion of metals coupled to the protein. The NOTA unit is selectively introduced on a lysine side chain. As site-specific labelling is necessary to avoid active region interactions (1-16, 41-68, 103-119 and 167-175), characterization of the chelate-modified somatropin is indispensable. Therefore, we have applied an enzymatic digestion procedure using trypsin, chymotrypsin and a combination of both enzymes. The resulting peptides were then monitored using HPLC-MSn, allowing the investigation of the exact amino acid modifications. The use of a mixture of trypsin and chymotrypsin gave an enhanced information efficiency. Moreover, the intact protein, without enzymatic degradation, was analysed on a protein HPLC column using UV detection for quantification and ESI-MS/MS for characterization. Based upon the HPLC-MSn results of the digested somatropin, the chelating molecule is mainly bound to a specific lysine amino acid that is located away from the receptor binding site. Therefore, the cell-binding functionality of the characterized NOTA-somatropin is measured, using a HepG2 cell line
Controlling platinum, ruthenium, and osmium reactivity for anticancer drug design
The main task of the medicinal chemist is to design molecules that interact
specifically with derailed or degenerating processes in a diseased organism,
translating the available knowledge of pathobiochemical and physiological data into
chemically useful information and structures. Current knowledge of the biological
and chemical processes underlying diseases is vast and rapidly expanding. In
particular the unraveling of the genome in combination with, for instance, the rapid
development of structural biology has led to an explosion in available information and
identification of new targets for chemotherapy. The task of translating this wealth of
data into active and selective new drugs is an enormous, but realistic, challenge. It
requires knowledge from many different fields, including molecular biology,
chemistry, pharmacology, physiology, and medicine and as such requires a truly
interdisciplinary approach.
Ultimately, the goal is to design molecules that satisfy all the requirements for a
candidate drug to function therapeutically. Therapeutic activity can then be achieved
by an understanding of and control over structure and reactivity of the candidate drug
through molecular manipulation
Influence of flow on the corrosion inhibition of carbon steel by fatty amines in association with phosphonocarboxylic acid salts
This work was carried out to study the inhibition mechanism of a carbon steel in a 200 mg l−1 NaCl solution by a non-toxic multi-component inhibitor used for water treatment in cooling circuits. The inhibitive formulation was composed of 50 mg l−1 fatty amines associated with 200
mg l−1 phosphonocarboxylic acid salts. Steady-state current–voltage curves, obtained with a rotating disc electrode, revealed that the properties of the protective layer were dependent on the electrode rotation rate and on the immersion time. The cathodic process of oxygen reduction was not modified in the presence of the inhibitive mixture. As expected, the current densities
increased when the rotation rate was increased. In the anodic range, original behaviour was observed: the current densities decreased when the electrode rotation rate increased. The morphology and the chemical composition of the inhibitive layers allowed the electrochemical results to be explained. Two distinct surface areas were visualised on the metal surface and the ratio between the two zones was dependent on the flow conditions. This behaviour was attributed to a mechanical effect linked to centrifugal force. XPS analysis revealed that the formation of a chelate between the phosphonocarboxylic acid salt molecules and the iron oxide/hydroxide was
enhanced by the increase of the electrode rotation rate
Mitochondrial protein import
Transport of nuclear-encoded precursor proteins into mitochondria includes proteolytic cleavage of aminoterminal targeting sequences in the mitochondrial matrix. We have isolated the processing activity from Neurospora crassa. The final preparation (enriched ca. 10,000-fold over cell extracts) consists of two proteins, the matrix processing peptidase (MPP, 57 kd) and a processing enhancing protein (PEP, 52 kd). The two components were isolated as monomers. PEP is about 15-fold more abundant in mitochondria than MPP. It is partly associated with the inner membrane, while MPP is soluble in the matrix. MPP alone has a low processing activity whereas PEP alone has no apparent activity. Upon recombining both, full processing activity is restored. Our data indicate that MPP contains the catalytic site and that PEP has an enhancing function. The mitochondrial processing enzyme appears to represent a new type of “signal peptidase,” different from the bacterial leader peptidase and the signal peptidase of the endoplasmic reticulum
- …
