477,757 research outputs found
Charge density wave in hidden order state of URuSi
We argue that the hidden order state in URuSi will induce a charge
density wave. The modulation vector of the charge density wave will be twice
that of the hidden order state, . To illustrate how the
charge density wave arises we use a Ginzburg-Landau theory that contains a
coupling of the charge density wave amplitude to the square of the HO order
parameter . This simple analysis allows us to predict the
intensity and temperature dependence of the charge density wave order parameter
in terms of the susceptibilities and coupling constants used in the
Ginzburg-Landau analysis.Comment: 8 pages, 4 figure
Properties of charge density waves in LaBaCuO
We report a comprehensive x-ray scattering study of charge density wave
(stripe) ordering in , for which the
superconducting is greatly suppressed. Strong superlattice reflections
corresponding to static ordering of charge stripes were observed in this
sample. The structural modulation at the lowest temperature was deduced based
on the intensity of over 70 unique superlattice positions surveyed. We found
that the charge order in this sample is described with one-dimensional charge
density waves, which have incommensurate wave-vectors (0.23, 0, 0.5) and (0,
0.23, 0.5) respectively on neighboring planes. The structural
modulation due to the charge density wave order is simply sinusoidal, and no
higher harmonics were observed. Just below the structural transition
temperature, short-range charge density wave correlation appears, which
develops into a large scale charge ordering around 40 K, close to the spin
density wave ordering temperature. However, this charge ordering fails to grow
into a true long range order, and its correlation length saturates at , and slightly decreases below about 15 K, which may be due to the onset
of two-dimensional superconductivity.Comment: 11 pages, 9 figure
Chemical pressure and hidden one-dimensional behavior in rare earth tri-telluride charge density wave compounds
We report on the first optical measurements of the rare-earth tri-telluride
charge-density-wave systems. Our data, collected over an extremely broad
spectral range, allow us to observe both the Drude component and the
single-particle peak, ascribed to the contributions due to the free charge
carriers and to the charge-density-wave gap excitation, respectively. The data
analysis displays a diminishing impact of the charge-density-wave condensate on
the electronic properties with decreasing lattice constant across the
rare-earth series. We propose a possible mechanism describing this behavior and
we suggest the presence of a one-dimensional character in these two-dimensional
compounds. We also envisage that interactions and umklapp processes might play
a relevant role in the formation of the charge-density-wave state in these
compounds.Comment: 8 pages, 5 figure
Amplitude `Higgs' mode in 2H-NbSe2 Superconductor
We report experimental evidences for the observation of the superconducting
amplitude mode, so-called `Higgs' mode in the charge density wave
superconductor 2H-NbSe2 using Raman scattering. By comparing 2H-NbSe2 and its
iso-structural partner 2H-NbS2 which shows superconductivity but lacks the
charge density wave order, we demonstrate that the superconducting mode in
2H-NbSe2 owes its spectral weight to the presence of the coexisting charge
density wave order. In addition, temperature dependent measurements in 2H-NbSe2
show a full spectral weight transfer from the charge density wave mode to the
superconducting mode upon entering the superconducting phase. Both observations
are fully consistent with a superconducting amplitude mode or Higgs mode.Comment: Accepted for publication in Phys. Rev. B Rapid Com. 5 pages with 3
figure
Coexistent State of Charge Density Wave and Spin Density Wave in One-Dimensional Quarter Filled Band Systems under Magnetic Fields
We theoretically study how the coexistent state of the charge density wave
and the spin density wave in the one-dimensional quarter filled band is
enhanced by magnetic fields. We found that when the correlation between
electrons is strong the spin density wave state is suppressed under high
magnetic fields, whereas the charge density wave state still remains. This will
be observed in experiments such as the X-ray measurement.Comment: 7 pages, 15 figure
The Wave Function and Quantum Reality
We investigate the meaning of the wave function by analyzing the mass and
charge density distribution of a quantum system. According to protective
measurement, a charged quantum system has mass and charge density proportional
to the modulus square of its wave function. It is shown that the mass and
charge density is not real but effective, and it is formed by the ergodic
motion of a localized particle with the total mass and charge of the system.
Moreover, it is argued that the ergodic motion is not continuous but
discontinuous and random. This result suggests a new interpretation of the wave
function, according to which the wave function is a description of random
discontinuous motion of particles, and the modulus square of the wave function
gives the probability density of the particles being in certain locations. It
is shown that the suggested interpretation of the wave function disfavors the
de Broglie-Bohm theory and the many-worlds interpretation but favors the
dynamical collapse theories, and the random discontinuous motion of particles
may provide an appropriate random source to collapse the wave function.Comment: 8 pages, no figure
- …
