397,835 research outputs found
Ionization via Chaos Assisted Tunneling
A simple example of quantum transport in a classically chaotic system is
studied. It consists in a single state lying on a regular island (a stable
primary resonance island) which may tunnel into a chaotic sea and further
escape to infinity via chaotic diffusion. The specific system is realistic : it
is the hydrogen atom exposed to either linearly or circularly polarized
microwaves. We show that the combination of tunneling followed by chaotic
diffusion leads to peculiar statistical fluctuation properties of the energy
and the ionization rate, especially to enhanced fluctuations compared to the
purely chaotic case. An appropriate random matrix model, whose predictions are
analytically derived, describes accurately these statistical properties.Comment: 30 pages, 11 figures, RevTeX and postscript, Physical Review E in
pres
Synchronization in driven versus autonomous coupled chaotic maps
The phenomenon of synchronization occurring in a locally coupled map lattice
subject to an external drive is compared to the synchronization process in an
autonomous coupled map system with similar local couplings plus a global
interaction. It is shown that chaotic synchronized states in both systems are
equivalent, but the collective states arising after the chaotic synchronized
state becomes unstable can be different in these two systems. It is found that
the external drive induces chaotic synchronization as well as synchronization
of unstable periodic orbits of the local dynamics in the driven lattice. On the
other hand, the addition of a global interaction in the autonomous system
allows for chaotic synchronization that is not possible in a large coupled map
system possessing only local couplings.Comment: 4 pages, 3 figs, accepted in Phys. Rev.
- …
