935,832 research outputs found
Beyond Worst-Case Analysis for Joins with Minesweeper
We describe a new algorithm, Minesweeper, that is able to satisfy stronger
runtime guarantees than previous join algorithms (colloquially, `beyond
worst-case guarantees') for data in indexed search trees. Our first
contribution is developing a framework to measure this stronger notion of
complexity, which we call {\it certificate complexity}, that extends notions of
Barbay et al. and Demaine et al.; a certificate is a set of propositional
formulae that certifies that the output is correct. This notion captures a
natural class of join algorithms. In addition, the certificate allows us to
define a strictly stronger notion of runtime complexity than traditional
worst-case guarantees. Our second contribution is to develop a dichotomy
theorem for the certificate-based notion of complexity. Roughly, we show that
Minesweeper evaluates -acyclic queries in time linear in the certificate
plus the output size, while for any -cyclic query there is some instance
that takes superlinear time in the certificate (and for which the output is no
larger than the certificate size). We also extend our certificate-complexity
analysis to queries with bounded treewidth and the triangle query.Comment: [This is the full version of our PODS'2014 paper.
PKI Scalability Issues
This report surveys different PKI technologies such as PKIX and SPKI and the
issues of PKI that affect scalability. Much focus is spent on certificate
revocation methodologies and status verification systems such as CRLs,
Delta-CRLs, CRS, Certificate Revocation Trees, Windowed Certificate Revocation,
OCSP, SCVP and DVCS.Comment: 23 pages, 2 figure
On second-order cone positive systems
Internal positivity offers a computationally cheap certificate for external
(input-output) positivity of a linear time-invariant system. However, the
drawback with this certificate lies in its realization dependency. Firstly,
computing such a realization requires to find a polyhedral cone with a
potentially high number of extremal generators that lifts the dimension of the
state-space representation, significantly. Secondly, not all externally
positive systems posses an internally positive realization. Thirdly, in many
typical applications such as controller design, system identification and model
order reduction, internal positivity is not preserved. To overcome these
drawbacks, we present a tractable sufficient certificate of external positivity
based on second-order cones. This certificate does not require any special
state-space realization: if it succeeds with a possibly non-minimal
realization, then it will do so with any minimal realization. While there exist
systems where this certificate is also necessary, we also demonstrate how to
construct systems, where both second-order and polyhedral cones as well as
other certificates fail. Nonetheless, in contrast to other realization
independent certificates, the present one appears to be favourable in terms of
applicability and conservatism. Three applications are representatively
discussed to underline its potential. We show how the certificate can be used
to find externally positive approximations of nearly externally positive
systems and demonstrated that this may help to reduce system identification
errors. The same algorithm is used then to design state-feedback controllers
that provide closed-loop external positivity, a common approach to avoid over-
and undershooting of the step response. Lastly, we present modifications to
generalized balanced truncation such that external positivity is preserved
where our certificate applies
Nondeterministic graph property testing
A property of finite graphs is called nondeterministically testable if it has
a "certificate" such that once the certificate is specified, its correctness
can be verified by random local testing. In this paper we study certificates
that consist of one or more unary and/or binary relations on the nodes, in the
case of dense graphs. Using the theory of graph limits, we prove that
nondeterministically testable properties are also deterministically testable.Comment: Version 2: 11 pages; we allow orientation in the certificate,
describe new application
Requirements for cabin crew medical examinations and assessments
The aim of the current study is to review current regulations relatively to medical requirements necessary to achieve suitability to fly of the cabin crew. There are three classes of flight crew medical standards and licensing. A first class medical certificate is required for all pilots who perform professional flights or skydiving instructors. A second class medical certificate is required only for persons who do not perform professional flights, skydiving activities or any other professional activity related to aircraft piloting (cabin crew, holders of Light Aircraft Pilot’s Licence - LAPL, remote pilot operators). Finally, a third class medical certificate is required for workers engaged in air traffic control
On the Power of Non-Adaptive Learning Graphs
We introduce a notion of the quantum query complexity of a certificate
structure. This is a formalisation of a well-known observation that many
quantum query algorithms only require the knowledge of the disposition of
possible certificates in the input string, not the precise values therein.
Next, we derive a dual formulation of the complexity of a non-adaptive
learning graph, and use it to show that non-adaptive learning graphs are tight
for all certificate structures. By this, we mean that there exists a function
possessing the certificate structure and such that a learning graph gives an
optimal quantum query algorithm for it.
For a special case of certificate structures generated by certificates of
bounded size, we construct a relatively general class of functions having this
property. The construction is based on orthogonal arrays, and generalizes the
quantum query lower bound for the -sum problem derived recently in
arXiv:1206.6528.
Finally, we use these results to show that the learning graph for the
triangle problem from arXiv:1210.1014 is almost optimal in these settings. This
also gives a quantum query lower bound for the triangle-sum problem.Comment: 16 pages, 1.5 figures v2: the main result generalised for all
certificate structures, a bug in the proof of Proposition 17 fixe
Towards the Integration of an Intuitionistic First-Order Prover into Coq
An efficient intuitionistic first-order prover integrated into Coq is useful
to replay proofs found by external automated theorem provers. We propose a
two-phase approach: An intuitionistic prover generates a certificate based on
the matrix characterization of intuitionistic first-order logic; the
certificate is then translated into a sequent-style proof.Comment: In Proceedings HaTT 2016, arXiv:1606.0542
Quantum Certificate Complexity
Given a Boolean function f, we study two natural generalizations of the
certificate complexity C(f): the randomized certificate complexity RC(f) and
the quantum certificate complexity QC(f). Using Ambainis' adversary method, we
exactly characterize QC(f) as the square root of RC(f). We then use this result
to prove the new relation R0(f) = O(Q2(f)^2 Q0(f) log n) for total f, where R0,
Q2, and Q0 are zero-error randomized, bounded-error quantum, and zero-error
quantum query complexities respectively. Finally we give asymptotic gaps
between the measures, including a total f for which C(f) is superquadratic in
QC(f), and a symmetric partial f for which QC(f) = O(1) yet Q2(f) = Omega(n/log
n).Comment: 9 page
Blind Admission? The ability of NSC maths to signal competence in university commerce courses as compared to the former SC Higher Grade maths
Mathematics is an important signal used for admission into commerce courses in South African universities. In 2008 the new National Senior Certificate replaced the former Senior Certificate. This new exam no longer had different grades and thus created a structural break in the ability of the mathematics mark to signal preparedness for university. Although the Department of Education provided a “translation” key between the two Certificates, the University of the Witwatersrand (and other universities) admitted many more students in 2009 that met the entry requirements than previously. However, this cohort has lower average test and exam scores than previous years. This suggests that marks obtained for mathematics in the new National Senior Certificate are inflated when compared to the former Senior Certificate. This paper uses similar tests, for two commerce subjects, written by students in 2008 and 2009 to create a comparison between the mathematics marks under the two different certificates. The results suggest that marks in the range of 40-100% for Higher Grade mathematics for the Senior Certificate are now compressed into the 70-95% range for the new National Senior Certificate. This significantly weakens the ability of the school-leaving mathematics mark to signal the ability of students to cope with first year commerce courses.Mathematics, National Senior Certificate, Economics 1, first year, Commerce courses, South Africa
- …
