502,280 research outputs found
Spatial spectrum and energy efficiency of random cellular networks
It is a great challenge to evaluate the network performance of cellular
mobile communication systems. In this paper, we propose new spatial spectrum
and energy efficiency models for Poisson-Voronoi tessellation (PVT) random
cellular networks. To evaluate the user access the network, a Markov chain
based wireless channel access model is first proposed for PVT random cellular
networks. On that basis, the outage probability and blocking probability of PVT
random cellular networks are derived, which can be computed numerically.
Furthermore, taking into account the call arrival rate, the path loss exponent
and the base station (BS) density in random cellular networks, spatial spectrum
and energy efficiency models are proposed and analyzed for PVT random cellular
networks. Numerical simulations are conducted to evaluate the network spectrum
and energy efficiency in PVT random cellular networks.Comment: appears in IEEE Transactions on Communications, April, 201
5G green cellular networks considering power allocation schemes
It is important to assess the effect of transmit power allocation schemes on
the energy consumption on random cellular networks. The energy efficiency of 5G
green cellular networks with average and water-filling power allocation schemes
is studied in this paper. Based on the proposed interference and achievable
rate model, an energy efficiency model is proposed for MIMO random cellular
networks. Furthermore, the energy efficiency with average and water-filling
power allocation schemes are presented, respectively. Numerical results
indicate that the maximum limits of energy efficiency are always there for MIMO
random cellular networks with different intensity ratios of mobile stations
(MSs) to base stations (BSs) and channel conditions. Compared with the average
power allocation scheme, the water-filling scheme is shown to improve the
energy efficiency of MIMO random cellular networks when channel state
information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure
Optimality of Orthogonal Access for One-dimensional Convex Cellular Networks
It is shown that a greedy orthogonal access scheme achieves the sum degrees
of freedom of all one-dimensional (all nodes placed along a straight line)
convex cellular networks (where cells are convex regions) when no channel
knowledge is available at the transmitters except the knowledge of the network
topology. In general, optimality of orthogonal access holds neither for
two-dimensional convex cellular networks nor for one-dimensional non-convex
cellular networks, thus revealing a fundamental limitation that exists only
when both one-dimensional and convex properties are simultaneously enforced, as
is common in canonical information theoretic models for studying cellular
networks. The result also establishes the capacity of the corresponding class
of index coding problems
A survey of self organisation in future cellular networks
This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
- …
