409,741 research outputs found

    Wireless Cellular Networks

    Full text link
    When aiming for achieving high spectral efficiency in wireless cellular networks, cochannel interference (CCI) becomes the dominant performancelimiting factor. This article provides a survey of CCI mitigation techniques, where both active and passive approaches are discussed in the context of both open- and closed-loop designs.More explicitly, we considered both the family of flexible frequency-reuse (FFR)-aided and dynamic channel allocation (DCA)-aided interference avoidance techniques as well as smart antenna-aided interference mitigation techniques, which may be classified as active approach

    Dimming cellular networks

    Get PDF
    We propose a novel technique called dimming to improve the energy efficiency of cellular networks by reducing the capacity, services, and energy consumption of cells without turning off the cells. We define three basic methods to dim the network: coverage, frequency, and service dimming. We construct a multi-time period optimization problem to implement frequency dimming and extend it to implement both frequency and service dimming together. We illustrate the ability of dimming techniques to adapt the capacity and network services in proportion to the dynamic spatial and temporal load resulting in significant energy savings through numerical results for a sample network. ©2010 IEEE

    Spatial spectrum and energy efficiency of random cellular networks

    Get PDF
    It is a great challenge to evaluate the network performance of cellular mobile communication systems. In this paper, we propose new spatial spectrum and energy efficiency models for Poisson-Voronoi tessellation (PVT) random cellular networks. To evaluate the user access the network, a Markov chain based wireless channel access model is first proposed for PVT random cellular networks. On that basis, the outage probability and blocking probability of PVT random cellular networks are derived, which can be computed numerically. Furthermore, taking into account the call arrival rate, the path loss exponent and the base station (BS) density in random cellular networks, spatial spectrum and energy efficiency models are proposed and analyzed for PVT random cellular networks. Numerical simulations are conducted to evaluate the network spectrum and energy efficiency in PVT random cellular networks.Comment: appears in IEEE Transactions on Communications, April, 201

    Flat Cellular (UMTS) Networks

    Get PDF
    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective it was better to concentrate traffic and to share the cost of processing equipment over a large set of users while keeping the base stations relatively cheap. However, we believe the economic reasons for designing cellular systems in a hierarchical manner have disappeared: in fact, hierarchical architectures hinder future efficient deployments. In this paper, we argue for completely flat cellular wireless systems, which need just one type of specialized network element to provide radio access network (RAN) functionality, supplemented by standard IP-based network elements to form a cellular network. While the reason for building a cellular system in a hierarchical fashion has disappeared, there are other good reasons to make the system architecture flat: (1) as wireless transmission techniques evolve into hybrid ARQ systems, there is less need for a hierarchical cellular system to support spatial diversity; (2) we foresee that future cellular networks are part of the Internet, while hierarchical systems typically use interfaces between network elements that are specific to cellular standards or proprietary. At best such systems use IP as a transport medium, not as a core component; (3) a flat cellular system can be self scaling while a hierarchical system has inherent scaling issues; (4) moving all access technologies to the edge of the network enables ease of converging access technologies into a common packet core; and (5) using an IP common core makes the cellular network part of the Internet

    Quantum Cellular Neural Networks

    Full text link
    We have previously proposed a way of using coupled quantum dots to construct digital computing elements - quantum-dot cellular automata (QCA). Here we consider a different approach to using coupled quantum-dot cells in an architecture which, rather that reproducing Boolean logic, uses a physical near-neighbor connectivity to construct an analog Cellular Neural Network (CNN).Comment: 7 pages including 3 figure

    Energy-efficiency for MISO-OFDMA based user-relay assisted cellular networks

    Get PDF
    The concept of improving energy-efficiency (EE) without sacrificing the service quality has become important nowadays. The combination of orthogonal frequency-division multiple-access (OFDMA) multi-antenna transmission technology and relaying is one of the key technologies to deliver the promise of reliable and high-data-rate coverage in the most cost-effective manner. In this paper, EE is studied for the downlink multiple-input single-output (MISO)-OFDMA based user-relay assisted cellular networks. EE maximization is formulated for decode and forward (DF) relaying scheme with the consideration of both transmit and circuit power consumption as well as the data rate requirements for the mobile users. The quality of-service (QoS)-constrained EE maximization, which is defined for multi-carrier, multi-user, multi-relay and multi-antenna networks, is a non-convex and combinatorial problem so it is hard to tackle. To solve this difficult problem, a radio resource management (RRM) algorithm that solves the subcarrier allocation, mode selection and power allocation separately is proposed. The efficiency of the proposed algorithm is demonstrated by numerical results for different system parameter
    corecore