2,683,157 research outputs found

    Modeling multi-cellular systems using sub-cellular elements

    Get PDF
    We introduce a model for describing the dynamics of large numbers of interacting cells. The fundamental dynamical variables in the model are sub-cellular elements, which interact with each other through phenomenological intra- and inter-cellular potentials. Advantages of the model include i) adaptive cell-shape dynamics, ii) flexible accommodation of additional intra-cellular biology, and iii) the absence of an underlying grid. We present here a detailed description of the model, and use successive mean-field approximations to connect it to more coarse-grained approaches, such as discrete cell-based algorithms and coupled partial differential equations. We also discuss efficient algorithms for encoding the model, and give an example of a simulation of an epithelial sheet. Given the biological flexibility of the model, we propose that it can be used effectively for modeling a range of multi-cellular processes, such as tumor dynamics and embryogenesis.Comment: 20 pages, 4 figure

    Relative cellular algebras

    Full text link
    In this paper we generalize cellular algebras by allowing different partial orderings relative to fixed idempotents. For these relative cellular algebras we classify and construct simple modules, and we obtain other characterizations in analogy to cellular algebras. We also give several examples of algebras that are relative cellular, but not cellular. Most prominently, the restricted enveloping algebra and the small quantum group for sl2\mathfrak{sl}_{2}, and an annular version of arc algebras.Comment: 39 pages, many figures, revised version, to appear in Transform. Groups, comments welcom

    Ultrastructural cellular signatures: does cellular form follow function?

    Get PDF

    On the decomposition of stochastic cellular automata

    Full text link
    In this paper we present two interesting properties of stochastic cellular automata that can be helpful in analyzing the dynamical behavior of such automata. The first property allows for calculating cell-wise probability distributions over the state set of a stochastic cellular automaton, i.e. images that show the average state of each cell during the evolution of the stochastic cellular automaton. The second property shows that stochastic cellular automata are equivalent to so-called stochastic mixtures of deterministic cellular automata. Based on this property, any stochastic cellular automaton can be decomposed into a set of deterministic cellular automata, each of which contributes to the behavior of the stochastic cellular automaton.Comment: Submitted to Journal of Computation Science, Special Issue on Cellular Automata Application

    Intrinsically Universal Cellular Automata

    Full text link
    This talk advocates intrinsic universality as a notion to identify simple cellular automata with complex computational behavior. After an historical introduction and proper definitions of intrinsic universality, which is discussed with respect to Turing and circuit universality, we discuss construction methods for small intrinsically universal cellular automata before discussing techniques for proving non universality

    Memristive excitable cellular automata

    Full text link
    The memristor is a device whose resistance changes depending on the polarity and magnitude of a voltage applied to the device's terminals. We design a minimalistic model of a regular network of memristors using structurally-dynamic cellular automata. Each cell gets info about states of its closest neighbours via incoming links. A link can be one 'conductive' or 'non-conductive' states. States of every link are updated depending on states of cells the link connects. Every cell of a memristive automaton takes three states: resting, excited (analog of positive polarity) and refractory (analog of negative polarity). A cell updates its state depending on states of its closest neighbours which are connected to the cell via 'conductive' links. We study behaviour of memristive automata in response to point-wise and spatially extended perturbations, structure of localised excitations coupled with topological defects, interfacial mobile excitations and growth of information pathways.Comment: Accepted to Int J Bifurcation and Chaos (2011

    Ratchet Cellular Automata

    Full text link
    In this work we propose a ratchet effect which provides a general means of performing clocked logic operations on discrete particles, such as single electrons or vortices. The states are propagated through the device by the use of an applied AC drive. We numerically demonstrate that a complete logic architecture is realizable using this ratchet. We consider specific nanostructured superconducting geometries using superconducting materials under an applied magnetic field, with the positions of the individual vortices in samples acting as the logic states. These devices can be used as the building blocks for an alternative microelectronic architecture.Comment: 4 pages, 3 figure
    corecore