1,155,604 research outputs found

    BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference.

    Get PDF
    We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by leveraging an easily obtainable prior knowledge on the cell-type composition distribution of the studied tissue. We show mathematically and empirically that alternative methods which attempt to infer cell counts without methylation reference only capture linear combinations of cell counts rather than provide one component per cell type. Our approach allows the construction of components such that each component corresponds to a single cell type, and provides a new opportunity to investigate cell compositions in genomic studies of tissues for which it was not possible before

    Increased Hematopoietic Extracellular RNAs and Vesicles in the Lung during Allergic Airway Responses.

    Get PDF
    Extracellular RNAs (exRNAs) can be released by numerous cell types in vitro, are often protected within vesicles, and can modify recipient cell function. To determine how the composition and cellular sources of exRNAs and the extracellular vesicles (EVs) that carry them change in vivo during tissue inflammation, we analyzed bronchoalveolar lavage fluid (BALF) from mice before and after lung allergen challenge. In the lung, extracellular microRNAs (ex-miRNAs) had a composition that was highly correlated with airway-lining epithelium. Using cell type-specific membrane tagging and single vesicle flow, we also found that 80% of detected vesicles were of epithelial origin. After the induction of allergic airway inflammation, miRNAs selectively expressed by immune cells, including miR-223 and miR-142a, increased and hematopoietic-cell-derived EVs also increased >2-fold. These data demonstrate that infiltrating immune cells release ex-miRNAs and EVs in inflamed tissues to alter the local extracellular environment

    Cell-type deconvolution in epigenome-wide association studies: a review and recommendations

    Get PDF
    A major challenge faced by epigenome-wide association studies (EWAS) is cell-type heterogeneity. As many EWAS have already demonstrated, adjusting for changes in cell-type composition can be critical when analyzing and interpreting findings from such studies. Because of their importance, a great number of different statistical algorithms, which adjust for cell-type composition, have been proposed. Some of the methods are ‘reference based’ in that they require a priori defined reference DNA methylation profiles of cell types that are present in the tissue of interest, while other algorithms are ‘reference free.’ At present, however, it is unclear how best to adjust for cell-type heterogeneity, as this may also largely depend on the type of tissue and phenotype being considered. Here, we provide a critical review of the major existing algorithms for correcting cell-type composition in the context of Illumina Infinium Methylation Beadarrays, with the aim of providing useful recommendations to the EWAS community

    Plant cell walls: impact on nutrient bioaccessibility and digestibility

    Get PDF
    Cell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties. These properties dictate how the cell walls behave in the human gastrointestinal tract, and how amenable they are to digestion, thereby modulating nutrient release from the plant tissue. This short narrative review presents an overview of our current knowledge on cell walls and how they impact nutrient bioaccessibility and digestibility. Some of the most relevant methods currently used to characterize the food matrix and the cell walls are also described

    Effect of restricted mobility on RNA content and nucleotide composition and on protein content in motoneurons of spinal cord anterior horns

    Get PDF
    An investigation into the effect of hypokinesia on the ribonucleic acid (RNA) content, the nucleotide composition, and dynamics of protein content in the motoneuron of the rat spinal cord anterior horns is described. Methodology and findings are presented. The study results showed that the nucleotide composition of the total cellular RNA at all the studied periods of hypokinesia remained unchanged and is characteristic for the cytoplasmic, high polymer ribosomal RNA. This means that with a change in the functional state of the neuron the newly formed RNA of the nerve cell has the same composition of bases as the original RNA that belongs to the ribosomal type

    Definition of Drosophila hemocyte subsets by cell-type specific antigens.

    Get PDF
    We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes
    corecore