2,575,845 research outputs found
Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types.
Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified
Phylogenetic Analysis of Cell Types using Histone Modifications
In cell differentiation, a cell of a less specialized type becomes one of a
more specialized type, even though all cells have the same genome.
Transcription factors and epigenetic marks like histone modifications can play
a significant role in the differentiation process. In this paper, we present a
simple analysis of cell types and differentiation paths using phylogenetic
inference based on ChIP-Seq histone modification data. We propose new data
representation techniques and new distance measures for ChIP-Seq data and use
these together with standard phylogenetic inference methods to build
biologically meaningful trees that indicate how diverse types of cells are
related. We demonstrate our approach on H3K4me3 and H3K27me3 data for 37 and 13
types of cells respectively, using the dataset to explore various issues
surrounding replicate data, variability between cells of the same type, and
robustness. The promising results we obtain point the way to a new approach to
the study of cell differentiation.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Quantification of Cell Movement Reveals Distinct Edge Motility Types During Cell Spreading
Actin-based motility is central to cellular processes such as migration, bacterial engulfment, and cancer metastasis, and requires precise spatial and temporal regulation of the cytoskeleton. We studied one such process, fibroblast spreading, which involves three temporal phases: early, middle, and late spreading, distinguished by differences in cell area growth. In these studies, aided by improved algorithms for analyzing edge movement, we observed that each phase was dominated by a single, kinematically and biochemically distinct cytoskeletal organization, or motility type. Specifically, early spreading was dominated by periodic blebbing; continuous protrusion occurred predominantly during middle spreading; and periodic contractions were prevalent in late spreading. Further characterization revealed that each motility type exhibited a distinct distribution of the actin-related protein VASP, while inhibition of actin polymerization by cytochalasin D treatment revealed different dependences on barbed-end polymerization. Through this detailed characterization and graded perturbation of the system, we observed that although each temporal phase of spreading was dominated by a single motility type, in general cells exhibited a variety of motility types in neighboring spatial domains of the plasma membrane edge. These observations support a model in which global signals bias local cytoskeletal biochemistry in favor of a particular motility type
Cultured microvascular endothelial cells derived from the bovine corpus luteum possess NCAM-140
Previously, five phenotypically different, stable types of microvascular endothelial cells (MVE) were isolated from the bovine corpus and cultured successfully. We found that three out of these five types of MVE express the neural cell adhesion molecule (NCAM). As shown by immunocytochemistry, weak NCAM immunoreactivity occurred mainly in the perinuclear area of cell type 1. Monolayers of types 2 and 5 revealed heavy NCAM immunoreactivity, which was localized predominantly at the lateral cell surface outlining the contact zones of adjacent cells. In contrast, cell types 3 and 4 were not NCAM immunoreactive. Western blot analyses substantiated these results: While cell type 1 showed a weak immunoreactive band, cell types 2 and 5 displayed strong NCAM-immunoreactive bands of a molecular weight of approximately 140 kDa (NCAM-140), which was absent in cell types 3 and 4. These results reveal for the first time that NCAM can be expressed by cultured MVE and may serve in mediating endothelial cell contacts. Since luteal cells also express NCAM-140, this adhesion molecule could in addition be involved in the interactions of luteal cells with MVE
Macromere cell fates during sea urchin development
This paper examines the cell lineage relationships and cell fates in embryos of the sea urchin Strongylocentrotus purpuratus leading to the various cell types derived from the definitive vegetal plate territory or the veg_2 tier of cells. These cell types are gut, pigment cells, basal cells and coelomic pouches. They are cell types that constitute embryonic structures through cellular migration or rearrangement unlike the relatively non-motile ectoderm cell types. For this analysis, we use previous knowledge of lineage to assign macromeres to one of four types: VOM, the oral macromere; VAM, the aboral macromere, right and left VLM, the lateral macromeres. Each of the four macromeres contributes progeny to all of the cell types that descend from the definitive vegetal plate. Thus in the gut each macromere contributes to the esophagus, stomach and intestine, and the stripe of labeled cells descendant from a macromere reflects the re-arrangement of cells that occurs during archenteron elongation. Pigment cell contributions exhibit no consistent pattern among the four macromeres, and are haphazardly distributed throughout the ectoderm. Gut and pigment cell contributions are thus radially symmetrical. In contrast, the VOM blastomere contributes to both of the coelomic pouches while the other three macromeres contribute to only one or the other pouch. The total of the macromere contribution amounts to 60% of the cells constituting the coelomic pouches
Discovering Neuronal Cell Types and Their Gene Expression Profiles Using a Spatial Point Process Mixture Model
Cataloging the neuronal cell types that comprise circuitry of individual
brain regions is a major goal of modern neuroscience and the BRAIN initiative.
Single-cell RNA sequencing can now be used to measure the gene expression
profiles of individual neurons and to categorize neurons based on their gene
expression profiles. While the single-cell techniques are extremely powerful
and hold great promise, they are currently still labor intensive, have a high
cost per cell, and, most importantly, do not provide information on spatial
distribution of cell types in specific regions of the brain. We propose a
complementary approach that uses computational methods to infer the cell types
and their gene expression profiles through analysis of brain-wide single-cell
resolution in situ hybridization (ISH) imagery contained in the Allen Brain
Atlas (ABA). We measure the spatial distribution of neurons labeled in the ISH
image for each gene and model it as a spatial point process mixture, whose
mixture weights are given by the cell types which express that gene. By fitting
a point process mixture model jointly to the ISH images, we infer both the
spatial point process distribution for each cell type and their gene expression
profile. We validate our predictions of cell type-specific gene expression
profiles using single cell RNA sequencing data, recently published for the
mouse somatosensory cortex. Jointly with the gene expression profiles, cell
features such as cell size, orientation, intensity and local density level are
inferred per cell type
Recommended from our members
Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type associated regulatory variants.
The Genotype-Tissue Expression (GTEx) resource has provided insights into the regulatory impact of genetic variation on gene expression across human tissues; however, thus far has not considered how variation acts at the resolution of the different cell types. Here, using gene expression signatures obtained from mouse cell types, we deconvolute bulk RNA-seq samples from 28 GTEx tissues to quantify cellular composition, which reveals striking heterogeneity across these samples. Conducting eQTL analyses for GTEx liver and skin samples using cell composition estimates as interaction terms, we identify thousands of genetic associations that are cell-type-associated. The skin cell-type associated eQTLs colocalize with skin diseases, indicating that variants which influence gene expression in distinct skin cell types play important roles in traits and disease. Our study provides a framework to estimate the cellular composition of GTEx tissues enabling the functional characterization of human genetic variation that impacts gene expression in cell-type-specific manners
- …
