2,067,540 research outputs found
Low-cost hot-air solar collector
System has only three components per cell. Cell parts are fabricated from readily available materials and, following a construction procedure which requires use of only simple handtools, can be mounted in place by one person
Universal relationship in gene-expression changes for cells in steady-growth state
Cells adapt to different conditions by altering a vast number of components,
which is measurable using transcriptome analysis. Given that a cell undergoing
steady growth is constrained to sustain each of its internal components, the
abundance of all the components in the cell has to be roughly doubled during
each cell division event. From this steady-growth constraint, expression of all
genes is shown to change along a one-parameter curve in the state space in
response to the environmental stress. This leads to a global relationship that
governs the cellular state: By considering a relatively moderate change around
a steady state, logarithmic changes in expression are shown to be proportional
across all genes, upon alteration of stress strength, with the proportionality
coefficient given by the change in the growth rate of the cell. This theory is
confirmed by transcriptome analysis of Escherichia Coli in response to several
stresses.Comment: 7 pages (5 figures) + 2 Supplementary pages (figures
Advanced architectural descriptors in foams: novel 3D computational methods
This work presents 3D computational strategies aimed at providing foam de-structuration of the basic components of a cellular material (struts and cell walls) offering the possibility of analysing separately the structural elements that play an important role in the physical properties of thee materials. Two different methodologies have been used depending on the topological similarities existing between the struts and cell walls: 3D erosion-dilation procedure (thick struts) and solid classification algorithm (thin struts). In a second step, analysis of cell walls is performed in order to show the advantages of analysing separately the two foams components. Particularly, cell wall thickness distribution reveals differences that could not be found prior to the de-structuration
Components of cell-matrix linkage as potential new markers for prostate cancer
Prostate cancer is one of the most common tumor diseases worldwide. Often being non-aggressive, prostate tumors in these cases do not need immediate treatment. However, about 20% of diagnosed prostate cancers tend to metastasize and require treatment. Existing diagnostic methods may fail to accurately recognize the transition of a dormant, non-aggressive tumor into highly malignant prostate cancer. Therefore, new diagnostic tools are needed to improve diagnosis and therapy of prostate carcinoma. This review evaluates existing methods to diagnose prostate carcinoma, such as the biochemical marker prostate-specific antigen (PSA), but also discusses the possibility to use the altered expression of integrins and laminin-332 in prostate carcinomas as diagnostic tools and therapeutic targets of prostate cancer
Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification.
Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines
Precursors of Cytochrome Oxidase in Cytochrome-Oxidase-Deficient Cells of Neurospora crassa
Three different cell types of Neurospora crassa deficient in cytochrome oxidase were studied: the nuclear mutant cni-1, the cytoplasmic mutant mi-1 and copper-depleted wild-type cells.
* 1.
The enzyme-deficient cells have retained a functioning mitochondrial protein synthesis. It accounted for 12–16% of the total protein synthesis of the cell. However, the analysis of mitochondrial translation products by gel electrophoresis revealed that different amounts of individual membrane proteins were synthesized. Especially mutant cni-1 produced large amounts of a small molecular weight translation product, which is barely detectable in wild-type.
* 2.
Mitochondrial preparations of cytochrome-oxidase-deficient cells were examined for precursors of cytochrome oxidase. The presence of polypeptide components of cytochrome oxidase in the mitochondria was established with specific antibodies. On the other hand, no significant amounts of heme a could be extracted.
* 3.
Radioactively labelled components of cytochrome oxidase were isolated by immunoprecipitation and analysed by gel electrophoresis. All three cell types contained the enzyme components 4–7, which are translated on cytoplasmic ribosomes. The mitochondrially synthesized components 1–3 were present in mi-1 mutant and in copper-depleted wild-type cells. In contrast, components 2 and 3 were not detectable in the nuclear mutant cni-1. Both relative and absolute amounts of these polypeptides in the enzyme-deficient cells were quite different from those in wild-type cells.
* 4.
The components of cytochrome oxidase found in the enzyme-deficient cells were tightly associated with the mitochondrial membranes.
* 5.
Processes, which affect and may control the production of enzyme precursors or their assembly to a functional cytochrome oxidase are discussed
Process development for automated solar cell and module production. Task 4: Automated array assembly
The cell preparation station was installed in its new enclosure. Operation verification tests were performed. The detailed layout drawings of the automated lamination station were produced and construction began. All major and most minor components were delivered by vendors. The station framework was built and assembly of components begun
Recommended from our members
The organisation and functions of local Ca<sup>2+</sup> signals
Calcium (Ca2+) is a ubiquitous intracellular messenger, controlling a diverse range of cellular processes, such as gene transcription, muscle contraction and cell proliferation. The ability of a simple ion such as Ca2+ to play a pivotal role in cell biology results from the facility that cells have to shape Ca2+ signals in space, time and amplitude. To generate and interpret the variety of observed Ca2+ signals, different cell types employ components selected from a Ca2+ signalling 'toolkit', which comprises an array of homeostatic and sensory mechanisms. By mixing and matching components from the toolkit, cells can obtain Ca2+ signals that suit their physiology. Recent studies have demonstrated the importance of local Ca2+ signals in defining the specificity of the interaction of Ca2+ with its targets. Furthermore, local Ca2+ signals are the triggers and building blocks for larger global signals that propagate throughout cells
Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates
As cells grow and divide under a given environment, they become crowded and
resources are limited, as seen in bacterial biofilms and multicellular
aggregates. These cells often show strong interactions through exchanging
chemicals, as in quorum sensing, to achieve mutualism. Here, to achieve stable
division of labor, three properties are required. First, isogenous cells
differentiate into several types. Second, this aggregate of distinct cell types
shows better growth than that of isolated cells, by achieving division of
labor. Third, this cell aggregate is robust in the number distribution of
differentiated cell types. We here address how cells acquire the ability of
cell differentiation and division of labor simultaneously, which is also
connected with the robustness of a cell society. For this purpose, we developed
a dynamical-systems model of cells consisting of chemical components with
intracellular catalytic reaction dynamics. The reactions convert external
nutrients into internal components for cellular growth, and the divided cells
interact via chemical diffusion. We found that cells sharing an identical
catalytic network spontaneously differentiate via induction from cell-cell
interactions, and then achieve division of labor, enabling a higher growth rate
than that in the unicellular case. This symbiotic differentiation emerged for a
class of reaction networks with limited resources and strong cell-cell
interactions. Then, robustness in the cell type distribution was achieved,
while instability of collective growth could emerge even among the cooperative
cells when the internal reserves of products were dominant. The present
mechanism is simple and general as a natural result of interacting cells with
resource limitation, and is consistent with the observed behaviors and forms of
several aggregates of unicellular organisms.Comment: 14 pages, 6 figure
- …
