614,513 research outputs found
K-causality coincides with stable causality
It is proven that K-causality coincides with stable causality, and that in a
K-causal spacetime the relation K^+ coincides with the Seifert's relation. As a
consequence the causal relation "the spacetime is strongly causal and the
closure of the causal relation is transitive" stays between stable causality
and causal continuity.Comment: 11 pages, 2 figure
Causality and Micro-Causality in Curved Spacetime
We consider how causality and micro-causality are realised in QED in curved
spacetime. The photon propagator is found to exhibit novel non-analytic
behaviour due to vacuum polarization, which invalidates the Kramers-Kronig
dispersion relation and calls into question the validity of micro-causality in
curved spacetime. This non-analyticity is ultimately related to the generic
focusing nature of congruences of geodesics in curved spacetime, as implied by
the null energy condition, and the existence of conjugate points. These results
arise from a calculation of the complete non-perturbative frequency dependence
of the vacuum polarization tensor in QED, using novel world-line path integral
methods together with the Penrose plane-wave limit of spacetime in the
neighbourhood of a null geodesic. The refractive index of curved spacetime is
shown to exhibit superluminal phase velocities, dispersion, absorption (due to
\gamma \to e^+e^-) and bi-refringence, but we demonstrate that the wavefront
velocity (the high-frequency limit of the phase velocity) is indeed c, thereby
guaranteeing that causality itself is respected.Comment: 16 pages, 11 figures, JHEP3, microcausality now shown to be respected
even when the Kramers-Kronig relation is violate
Causality violation and singularities
We show that singularities necessarily occur when a boundary of causality
violating set exists in a space-time under the physically suitable assumptions
except the global causality condition in the Hawking-Penrose singularity
theorems. Instead of the global causality condition, we impose some
restrictions on the causality violating sets to show the occurrence of
singularities.Comment: 11 pages, latex, 2 eps figure
Delegated causality of complex systems
A notion of delegated causality is introduced here. This subtle kind of causality is dual to interventional causality. Delegated causality elucidates the causal role of dynamical systems at the “edge of chaos”, explicates evident cases of downward causation, and relates emergent phenomena to Gödel’s incompleteness theorem. Apparently rich implications are noticed in biology and Chinese philosophy. The perspective of delegated causality supports cognitive interpretations of self-organization and evolution
Counterfactual Causality from First Principles?
In this position paper we discuss three main shortcomings of existing
approaches to counterfactual causality from the computer science perspective,
and sketch lines of work to try and overcome these issues: (1) causality
definitions should be driven by a set of precisely specified requirements
rather than specific examples; (2) causality frameworks should support system
dynamics; (3) causality analysis should have a well-understood behavior in
presence of abstraction.Comment: In Proceedings CREST 2017, arXiv:1710.0277
Causality for ELKOs
The importance for cosmology of the recently introduced ELKOs requires our
deepest understanding of them and of all of their fundamental properties. Among
these fundamental properties, a special one is causality: in the present paper,
we show that causality is always preserved for ELKOs.Comment: 6 page
- …
