285,516 research outputs found
OnionNet: Sharing Features in Cascaded Deep Classifiers
The focus of our work is speeding up evaluation of deep neural networks in
retrieval scenarios, where conventional architectures may spend too much time
on negative examples. We propose to replace a monolithic network with our novel
cascade of feature-sharing deep classifiers, called OnionNet, where subsequent
stages may add both new layers as well as new feature channels to the previous
ones. Importantly, intermediate feature maps are shared among classifiers,
preventing them from the necessity of being recomputed. To accomplish this, the
model is trained end-to-end in a principled way under a joint loss. We validate
our approach in theory and on a synthetic benchmark. As a result demonstrated
in three applications (patch matching, object detection, and image retrieval),
our cascade can operate significantly faster than both monolithic networks and
traditional cascades without sharing at the cost of marginal decrease in
precision.Comment: Accepted to BMVC 201
ICNet for Real-Time Semantic Segmentation on High-Resolution Images
We focus on the challenging task of real-time semantic segmentation in this
paper. It finds many practical applications and yet is with fundamental
difficulty of reducing a large portion of computation for pixel-wise label
inference. We propose an image cascade network (ICNet) that incorporates
multi-resolution branches under proper label guidance to address this
challenge. We provide in-depth analysis of our framework and introduce the
cascade feature fusion unit to quickly achieve high-quality segmentation. Our
system yields real-time inference on a single GPU card with decent quality
results evaluated on challenging datasets like Cityscapes, CamVid and
COCO-Stuff.Comment: ECCV 201
Learning Complexity-Aware Cascades for Deep Pedestrian Detection
The design of complexity-aware cascaded detectors, combining features of very
different complexities, is considered. A new cascade design procedure is
introduced, by formulating cascade learning as the Lagrangian optimization of a
risk that accounts for both accuracy and complexity. A boosting algorithm,
denoted as complexity aware cascade training (CompACT), is then derived to
solve this optimization. CompACT cascades are shown to seek an optimal
trade-off between accuracy and complexity by pushing features of higher
complexity to the later cascade stages, where only a few difficult candidate
patches remain to be classified. This enables the use of features of vastly
different complexities in a single detector. In result, the feature pool can be
expanded to features previously impractical for cascade design, such as the
responses of a deep convolutional neural network (CNN). This is demonstrated
through the design of a pedestrian detector with a pool of features whose
complexities span orders of magnitude. The resulting cascade generalizes the
combination of a CNN with an object proposal mechanism: rather than a
pre-processing stage, CompACT cascades seamlessly integrate CNNs in their
stages. This enables state of the art performance on the Caltech and KITTI
datasets, at fairly fast speeds
Feature detection in satellite images using neural network technology
A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused
- …
