17,642 research outputs found
Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors
Graphene has emerged as a promising material for photonic applications
fuelled by its superior electronic and optical properties. However, the
photoresponsivity is limited by the low absorption cross section and ultrafast
recombination rates of photoexcited carriers. Here we demonstrate a
photoconductive gain of 10 electrons per photon in a carbon
nanotube-graphene one dimensional-two dimensional hybrid due to efficient
photocarriers generation and transport within the nanostructure. A broadband
photodetector (covering 400 nm to 1550 nm) based on such hybrid films is
fabricated with a high photoresponsivity of more than 100 AW and a fast
response time of approximately 100 {\mu}s. The combination of ultra-broad
bandwidth, high responsivities and fast operating speeds affords new
opportunities for facile and scalable fabrication of all-carbon optoelectronic
devices.Comment: 21 pages, 3 figure
Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric.
Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm(2) V(-1) s(-1), on/off ratio of 10(3)-10(4), switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays
Self-assembly of carbon-nanotube-based single electron memories
We demonstrate wafer-scale integration of single electron memories based on
carbon nanotube field effect transistors (cnfets) by a complete self assembly
process. First, a dry self assembly based on a Hot Filament assisted Chemical
Vapor Deposition technique allows both localized growth and in situ electrical
connection of carbon nanotubes on predefined catalytic electrodes. The
semiconducting carbon nanotubes integration yield can exceed 50% for a batch.
Secondly, a wet self-assembly attaches single 30 nm-diameter gold bead in the
nanotube vicinity via chemical functionalization. The bead acts as the memory
storage node while the cnfet operated in the subthreshold regime is an
electrometer having exponential gain. Below 50 K, the transfer characteristics
of some functionalized cnfets show highly reproducible hysteretical steps whose
height can reach one decade of current. Evaluation of the capacitance confirms
these current steps originate from single electron transfers between the bead
and the nanotubes with a time retention exceeding 550s at 1.5K
Recommended from our members
Characterizing the Conductivity and Enhancing the Piezoresistivity of Carbon Nanotube-Polymeric Thin Films.
The concept of lightweight design is widely employed for designing and constructing aerospace structures that can sustain extreme loads while also being fuel-efficient. Popular lightweight materials such as aluminum alloy and fiber-reinforced polymers (FRPs) possess outstanding mechanical properties, but their structural integrity requires constant assessment to ensure structural safety. Next-generation structural health monitoring systems for aerospace structures should be lightweight and integrated with the structure itself. In this study, a multi-walled carbon nanotube (MWCNT)-based polymer paint was developed to detect distributed damage in lightweight structures. The thin film's electromechanical properties were characterized via cyclic loading tests. Moreover, the thin film's bulk conductivity was characterized by finite element modeling
Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors
Substantial progress on field effect transistors "FETs" consisting of
semiconducting single wall carbon nanotubes "s-SWNTs" without detectable traces
of metallic nanotubes and impurities is reported. Nearly perfect removal of
metallic nanotubes is confirmed by optical absorption, Raman measurements, and
electrical measurements. This outstanding result was made possible in
particular by ultracentrifugation (150 000 g) of solutions prepared from SWNT
powders using polyfluorene as an extracting agent in toluene. Such s-SWNTs
processable solutions were applied to realize FET, embodying randomly or
preferentially oriented nanotube networks prepared by spin coating or
dielectrophoresis. Devices exhibit stable p-type semiconductor behavior in air
with very promising characteristics. The on-off current ratio is 10^5, the
on-current level is around 10 A, and the estimated hole mobility is larger
than 2 cm2 / V s
- …