19,126 research outputs found

    Attend to You: Personalized Image Captioning with Context Sequence Memory Networks

    Get PDF
    We address personalization issues of image captioning, which have not been discussed yet in previous research. For a query image, we aim to generate a descriptive sentence, accounting for prior knowledge such as the user's active vocabularies in previous documents. As applications of personalized image captioning, we tackle two post automation tasks: hashtag prediction and post generation, on our newly collected Instagram dataset, consisting of 1.1M posts from 6.3K users. We propose a novel captioning model named Context Sequence Memory Network (CSMN). Its unique updates over previous memory network models include (i) exploiting memory as a repository for multiple types of context information, (ii) appending previously generated words into memory to capture long-term information without suffering from the vanishing gradient problem, and (iii) adopting CNN memory structure to jointly represent nearby ordered memory slots for better context understanding. With quantitative evaluation and user studies via Amazon Mechanical Turk, we show the effectiveness of the three novel features of CSMN and its performance enhancement for personalized image captioning over state-of-the-art captioning models.Comment: Accepted paper at CVPR 201

    COMIC: Towards A Compact Image Captioning Model with Attention

    Full text link
    Recent works in image captioning have shown very promising raw performance. However, we realize that most of these encoder-decoder style networks with attention do not scale naturally to large vocabulary size, making them difficult to be deployed on embedded system with limited hardware resources. This is because the size of word and output embedding matrices grow proportionally with the size of vocabulary, adversely affecting the compactness of these networks. To address this limitation, this paper introduces a brand new idea in the domain of image captioning. That is, we tackle the problem of compactness of image captioning models which is hitherto unexplored. We showed that, our proposed model, named COMIC for COMpact Image Captioning, achieves comparable results in five common evaluation metrics with state-of-the-art approaches on both MS-COCO and InstaPIC-1.1M datasets despite having an embedding vocabulary size that is 39x - 99x smaller. The source code and models are available at: https://github.com/jiahuei/COMIC-Compact-Image-Captioning-with-AttentionComment: Added source code link and new results in Table

    Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning

    Full text link
    Visual language grounding is widely studied in modern neural image captioning systems, which typically adopts an encoder-decoder framework consisting of two principal components: a convolutional neural network (CNN) for image feature extraction and a recurrent neural network (RNN) for language caption generation. To study the robustness of language grounding to adversarial perturbations in machine vision and perception, we propose Show-and-Fool, a novel algorithm for crafting adversarial examples in neural image captioning. The proposed algorithm provides two evaluation approaches, which check whether neural image captioning systems can be mislead to output some randomly chosen captions or keywords. Our extensive experiments show that our algorithm can successfully craft visually-similar adversarial examples with randomly targeted captions or keywords, and the adversarial examples can be made highly transferable to other image captioning systems. Consequently, our approach leads to new robustness implications of neural image captioning and novel insights in visual language grounding.Comment: Accepted by 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018). Hongge Chen and Huan Zhang contribute equally to this wor

    Neural Baby Talk

    Full text link
    We introduce a novel framework for image captioning that can produce natural language explicitly grounded in entities that object detectors find in the image. Our approach reconciles classical slot filling approaches (that are generally better grounded in images) with modern neural captioning approaches (that are generally more natural sounding and accurate). Our approach first generates a sentence `template' with slot locations explicitly tied to specific image regions. These slots are then filled in by visual concepts identified in the regions by object detectors. The entire architecture (sentence template generation and slot filling with object detectors) is end-to-end differentiable. We verify the effectiveness of our proposed model on different image captioning tasks. On standard image captioning and novel object captioning, our model reaches state-of-the-art on both COCO and Flickr30k datasets. We also demonstrate that our model has unique advantages when the train and test distributions of scene compositions -- and hence language priors of associated captions -- are different. Code has been made available at: https://github.com/jiasenlu/NeuralBabyTalkComment: 12 pages, 7 figures, CVPR 201
    corecore