425,982 research outputs found
Laser-heater assisted plasma channel formation in capillary discharge waveguides
A method of creating plasma channels with controllable depth and transverse
profile for the guiding of short, high power laser pulses for efficient
electron acceleration is proposed. The plasma channel produced by the
hydrogen-filled capillary discharge waveguide is modified by a ns-scale laser
pulse, which heats the electrons near the capillary axis. This interaction
creates a deeper plasma channel within the capillary discharge that evolves on
a ns-time scale, allowing laser beams with smaller spot sizes than would
otherwise be possible in the unmodified capillary discharge.Comment: 5 pages, 3 figure
Interfacial tension measurement of immiscible liq uids using a capillary tube
The interfacial tension of immiscible liquids is an important thermophysical property that is useful in the behavior of liquids both in microgravity (Martinez et al. (1987) and Karri and Mathur (1988)) and in enhanced oil recovery processes under normal gravity (Slattery (1974)). Many techniques are available for its measurement, such as the ring method, drop weight method, spinning drop method, and capillary height method (Adamson (1960) and Miller and Neogi (1985)). Karri and Mathur mention that many of the techniques use equations that contain a density difference term and are inappropriate for equal density liquids. They reported a new method that is suitable for both equal and unequal density liquids. In their method, a capillary tube forms one of the legs of a U-tube. The interfacial tension is related to the heights of the liquids in the cups of the U-tube above the interface in the capillary. Our interest in this area arose from a need to measure small interfacial tension (around 1 mN/m) for a vegetable oil/silicon oil system that was used in a thermocapillary drop migration experiment (Rashidnia and Balasubramaniam (1991)). In our attempts to duplicate the method proposed by Karri and Mathur, we found it quite difficult to anchor the interface inside the capillary tube; small differences of the liquid heights in the cups drove the interface out of the capillary. We present an alternative method using a capillary tube to measure the interfacial tensions of liquids of equal or unequal density. The method is based on the combined capillary rises of both liquids in the tube
On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas
A method for the asymmetric focusing of electron bunches, based on the active
plasma lensing technique is proposed. This method takes advantage of the strong
inhomogeneous magnetic field generated inside the capillary discharge plasma to
focus the ultrarelativistic electrons. The plasma and magnetic field parameters
inside the capillary discharge are described theoretically and modeled with
dissipative magnetohydrodynamic computer simulations enabling analysis of the
capillaries of rectangle cross-sections. Large aspect ratio rectangular
capillaries might be used to transport electron beams with high emittance
asymmetries, as well as assist in forming spatially flat electron bunches for
final focusing before the interaction point.Comment: 16 pages, 7 figures, 1 tabl
The development of a method to determine felinine in body fluids by capillary electrophoresis : a thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy in Chemistry at Massey University
Ion-exchange, paper-chromatography and high performance liquid chromatography were used in earlier studies for the determination of felinine in biological fluids. These methods were either inadequate and/or need laborious sample pre-treatments. A new method for the determination of felinine by capillary zone electrophoresis has been developed. Preliminary investigations were carried out to address the conditions required for the separation of felinine. The separation of felinine can be performed on a fused-silica capillary with a 20 mM phosphate buffer (pH 2.0) and detection wavelength 200 nm. The separation principle was based on the different migration times due to the different molecular weights, molecular sizes and charges under an applied potential field. The quantitative determination of felinine levels in cat urine has been achieved. The cat urine analysis was performed directly on the capillary electrophoresis without making any felinine derivative(s). The levels of felinine in different cat genders are reported. The results were compared with the results of an HPLC felinine derivatization method. Felinine levels in entire male cat urine were much higher than those in female and castrated male cat urine. A synthetic felinine was employed as standard felinine. Linear relationships between peak area and concentration of synthetic felinine calibrations are reported. Mean felinine recovery in cat urine was 95.9%. Taurine, urea, creatine and creatinine, which exist in large amounts in cat urine, showed no interference with the analysis of felinine by this method. The new capillary zone electrophoresis method was then applied to the study of felinine stability. Conditions reported to influence the stability of felinine were investigated. These conditions included oxidation, storage temperatures and times, heating, acidic and alkaline solutions. Both synthetic felinine and felinine in cat urine were investigated. Storage temperature (-20°C to 20°C) had no significant influence on the stability of felinine while higher temperatures increased the decomposition of felinine. Felinine degraded at strong acid and base conditions but was relatively stable under mild acid and base conditions. A similar stability of felinine in human urine is also reported. The capillary zone electrophoresis method was also employed to study felinine in plasma and serum. Plasma and serum as well as urine can be analysed directly on the capillary electrophoresis after sufficient dilution. Conditions (eg. protein clean up, changing of injection time, 37°C heating) that might influence of felinine behaviour in plasma and serum are discussed. This study indicated that no traces felinine be found in cat plasma, within the detection limits of this new capillary electrophoresis method
Following red blood cells in a pulmonary capillary
The red blood cells or erythrocytes are biconcave shaped cells and consist
mostly in a membrane delimiting a cytosol with a high concentration in
hemoglobin. This membrane is highly deformable and allows the cells to go
through narrow passages like the capillaries which diameters can be much
smaller than red blood cells one. They carry oxygen thanks to hemoglobin, a
complex molecule that have very high affinity for oxygen. The capacity of
erythrocytes to load and unload oxygen is thus a determinant factor in their
efficacy. In this paper, we will focus on the pulmonary capillary where red
blood cells capture oxygen. We propose a camera method in order to numerically
study the behavior of the red blood cell along a whole capillary. Our goal is
to understand how erythrocytes geometrical changes along the capillary can
affect its capacity to capture oxygen. The first part of this document presents
the model chosen for the red blood cells along with the numerical method used
to determine and follow their shapes along the capillary. The membrane of the
red blood cell is complex and has been modelled by an hyper-elastic approach
coming from Mills et al (2004). This camera method is then validated and
confronted with a standard ALE method. Some geometrical properties of the red
blood cells observed in our simulations are then studied and discussed. The
second part of this paper deals with the modeling of oxygen and hemoglobin
chemistry in the geometries obtained in the first part. We have implemented a
full complex hemoglobin behavior with allosteric states inspired from
Czerlinski et al (1999).Comment: 17 page
Confinements regulate capillary instabilities of fluid threads
We study the breakup of confined fluid threads at low flow rates to
understand instability mechanisms. To determine the critical conditions between
the earlier quasi-stable necking stage and the later unstable collapse stage,
simulations and experiments are designed to operate at an extremely low flow
rate. Critical mean radii at neck centres are identified by the stop-flow
method for elementary microfluidic configurations. Analytical investigations
reveal two distinct origins of capillary instabilities. One is the gradient of
capillary pressure induced by the confinements of geometry and external flow,
whereas the other is the competition between local capillary pressure and
internal pressure determined by the confinements
- …
