134 research outputs found

    View-Disentangled Transformer for Brain Lesion Detection

    Full text link
    Deep neural networks (DNNs) have been widely adopted in brain lesion detection and segmentation. However, locating small lesions in 2D MRI slices is challenging, and requires to balance between the granularity of 3D context aggregation and the computational complexity. In this paper, we propose a novel view-disentangled transformer to enhance the extraction of MRI features for more accurate tumour detection. First, the proposed transformer harvests long-range correlation among different positions in a 3D brain scan. Second, the transformer models a stack of slice features as multiple 2D views and enhance these features view-by-view, which approximately achieves the 3D correlation computing in an efficient way. Third, we deploy the proposed transformer module in a transformer backbone, which can effectively detect the 2D regions surrounding brain lesions. The experimental results show that our proposed view-disentangled transformer performs well for brain lesion detection on a challenging brain MRI dataset.Comment: International Symposium on Biomedical Imaging (ISBI) 2022, code: https://github.com/lhaof/ISBI-VDForme

    Deep Neural Network with l2-norm Unit for Brain Lesions Detection

    Full text link
    Automated brain lesions detection is an important and very challenging clinical diagnostic task because the lesions have different sizes, shapes, contrasts, and locations. Deep Learning recently has shown promising progress in many application fields, which motivates us to apply this technology for such important problem. In this paper, we propose a novel and end-to-end trainable approach for brain lesions classification and detection by using deep Convolutional Neural Network (CNN). In order to investigate the applicability, we applied our approach on several brain diseases including high and low-grade glioma tumor, ischemic stroke, Alzheimer diseases, by which the brain Magnetic Resonance Images (MRI) have been applied as an input for the analysis. We proposed a new operating unit which receives features from several projections of a subset units of the bottom layer and computes a normalized l2-norm for next layer. We evaluated the proposed approach on two different CNN architectures and number of popular benchmark datasets. The experimental results demonstrate the superior ability of the proposed approach.Comment: Accepted for presentation in ICONIP-201

    A Radiomics Approach to Traumatic Brain Injury Prediction in CT Scans

    Full text link
    Computer Tomography (CT) is the gold standard technique for brain damage evaluation after acute Traumatic Brain Injury (TBI). It allows identification of most lesion types and determines the need of surgical or alternative therapeutic procedures. However, the traditional approach for lesion classification is restricted to visual image inspection. In this work, we characterize and predict TBI lesions by using CT-derived radiomics descriptors. Relevant shape, intensity and texture biomarkers characterizing the different lesions are isolated and a lesion predictive model is built by using Partial Least Squares. On a dataset containing 155 scans (105 train, 50 test) the methodology achieved 89.7 % accuracy over the unseen data. When a model was build using only texture features, a 88.2 % accuracy was obtained. Our results suggest that selected radiomics descriptors could play a key role in brain injury prediction. Besides, the proposed methodology is close to reproduce radiologists decision making. These results open new possibilities for radiomics-inspired brain lesion detection, segmentation and prediction.Comment: Submitted to ISBI 201
    • …
    corecore