104,945 research outputs found
Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain
The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
Brain circuitry of compulsivity.
Compulsivity is associated with alterations in the structure and the function of parallel and interacting brain circuits involved in emotional processing (involving both the reward and the fear circuits), cognitive control, and motor functioning. These brain circuits develop during the pre-natal period and early childhood under strong genetic and environmental influences. In this review we bring together literature on cognitive, emotional, and behavioral processes in compulsivity, based mainly on studies in patients with obsessive-compulsive disorder and addiction. Disease symptoms normally change over time. Goal-directed behaviors, in response to reward or anxiety, often become more habitual over time. During the course of compulsive disorders the mental processes and repetitive behaviors themselves contribute to the neuroplastic changes in the involved circuits, mainly in case of chronicity. On the other hand, successful treatment is able to normalize altered circuit functioning or to induce compensatory mechanisms. We conclude that insight in the neurobiological characteristics of the individual symptom profile and disease course, including the potential targets for neuroplasticity is an unmet need to advance the field.Dr. Soriano-Mas is funded by a ׳Miguel Servet׳ contract from the Carlos III Health Institute (CP10/00604). Dr. Goudriaan is supported by a VIDI Innovative Research Grant (Grant no. 91713354) funded by the Dutch Scientific Research Association (NWO-ZonMW). Dr. Alonso was funded by the Instituto de Salut Carlos III-FISPI14/00413. Dr. Nakamae received Grant support from MEXT KAKENHI (Nos. 24791223 and 26461753).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.euroneuro.2015.12.00
Focused Proofreading: Efficiently Extracting Connectomes from Segmented EM Images
Identifying complex neural circuitry from electron microscopic (EM) images
may help unlock the mysteries of the brain. However, identifying this circuitry
requires time-consuming, manual tracing (proofreading) due to the size and
intricacy of these image datasets, thus limiting state-of-the-art analysis to
very small brain regions. Potential avenues to improve scalability include
automatic image segmentation and crowd sourcing, but current efforts have had
limited success. In this paper, we propose a new strategy, focused
proofreading, that works with automatic segmentation and aims to limit
proofreading to the regions of a dataset that are most impactful to the
resulting circuit. We then introduce a novel workflow, which exploits
biological information such as synapses, and apply it to a large dataset in the
fly optic lobe. With our techniques, we achieve significant tracing speedups of
3-5x without sacrificing the quality of the resulting circuit. Furthermore, our
methodology makes the task of proofreading much more accessible and hence
potentially enhances the effectiveness of crowd sourcing
Formation and life-time of memory domains in the dissipative quantum model of brain
We show that in the dissipative quantum model of brain the time-dependence of
the frequencies of the electrical dipole wave quanta leads to the dynamical
organization of the memories in space (i.e. to their localization in more or
less diffused regions of the brain) and in time (i.e. to their longer or
shorter life-time). The life-time and the localization in domains of the memory
states also depend on internal parameters and on the number of links that the
brain establishes with the external world. These results agree with the
physiological observations of the dynamic formation of neural circuitry which
grows as brain develops and relates to external world.Comment: LaTex file, 4 figures, 19 page
Testing the Paleolithic-human-warfare hypothesis of blood-injectiion phobia in the Balitmore ECA Follow-up Study-Towards a more etiologically-based conceptualization for DSM-V
Objective:
The
research
agenda
for
the
fifth
edition
of
the
Diagnostic
and
Statistical
Manual
of
Mental
Disorders
(DSM-V)
has
emphasized
the
need
for a
more
etiologically-based
classification
system,
especially
for
stress-induced
and
fear-circuitry
disorders.
Testable
hypotheses
based
on
threats
to
survival
during
particular
segments
of
the
human
era
of
evolutionary
adaptedness
(EEA)
may
be
useful
in
developing a
brain-evolution-based
classification
for
the
wide
spectrum
of
disorders
ranging
from
disorders
which
are
mostly
overconsolidationally
such
as
PTSD,
to
fear-circuitry
disorders
which
are
mostly
innate
such
as
specific
phobias.
The
recently
presented
Paleolithic-human-warfare
hypothesis
posits
that
blood–injection
phobia
can
be
traced
to a
“survival
(fitness)
enhancing”
trait,
which
evolved
in
some
females
of
reproductive-age
during
the
millennia
of
intergroup
warfare
in
the
Paleolithic
EEA.
The
study
presented
here
tests
the
key a
priori
prediction
of
this
hypothesis—that
current
blood–injection
phobia
will
have
higher
prevalence
in
reproductive-age
women
than
in
post-menopausal
women.
Method:
The
Diagnostic
Interview
Schedule
(version
III-R)
,
which
included a
section
on
blood
and
injection
phobia,
was
administered
to
1920
subjects
in
the
Baltimore
ECA
Follow-up
Study.
Results:
Data
on
BII
phobia
was
available
on
1724
subjects
(1078
women
and
646
males)
.
The
prevalence
of
current
blood–
injection
phobia
was
3.3%
in
women
aged
27–49
and
1.1%
in
women
over
age
50
(OR
3.05,
95%
CI
1.20–7.73)
.
[The
corresponding
figures
for
males
were
0.8%
and
0.7%
(OR
1.19,
95%
CI
0.20–7.14)]
.
Conclusions:
This
epidemiological
study
provides
one
source
of
support
for
the
Paleolithic-human-warfare
(Paleolithic-threat)
hypothesis
regarding
the
evolutionary
(distal)
etiology
of
bloodletting-related
phobia,
and
may
contribute
to a
more
brain-
evolution-based
re-conceptualization
and
classification
of
this
fear
circuitry-related
trait
for
the
DSM-V.
In
addition,
the
finding
reported
here
may
also
stimulate
new
research
directions
on
more
proximal
mechanisms
which
can
lead
to
the
development
of
evidence-based
psychopharmacological
preventive
interventions
for
this
common
and
sometimes
disabling
fear-circuitry
disorder
Descending telencephalic information reaches longitudinal torus and cerebellum via the dorsal preglomerular nucleus in the teleost fish, Pantodon buchholzi
Human brain evolution and the "Neuroevolutionary Time-depth Principle:" Implications for the Reclassification of fear-circuitry-related traits in DSM-V and for studying resilience to warzone-related posttraumatic stress disorder.
The DSM-III, DSM-IV, DSM-IV-TR and ICD-10 have judiciously minimized discussion of etiologies to distance clinical psychiatry from Freudian psychoanalysis. With this goal mostly achieved, discussion of etiological factors should be reintroduced into the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). A research agenda for the DSM-V advocated the "development of a pathophysiologically based classification system". The author critically reviews the neuroevolutionary literature on stress-induced and fear circuitry disorders and related amygdala-driven, species-atypical fear behaviors of clinical severity in adult humans. Over 30 empirically testable/falsifiable predictions are presented. It is noted that in DSM-IV-TR and ICD-10, the classification of stress and fear circuitry disorders is neither mode-of-acquisition-based nor brain-evolution-based. For example, snake phobia (innate) and dog phobia (overconsolidational) are clustered together. Similarly, research on blood-injection-injury-type-specific phobia clusters two fears different in their innateness: 1) an arguably ontogenetic memory-trace-overconsolidation-based fear (hospital phobia) and 2) a hardwired (innate) fear of the sight of one's blood or a sharp object penetrating one's skin. Genetic architecture-charting of fear-circuitry-related traits has been challenging. Various, non-phenotype-based architectures can serve as targets for research. In this article, the author will propose one such alternative genetic architecture. This article was inspired by the following: A) Nesse's "Smoke-Detector Principle", B) the increasing suspicion that the "smooth" rather than "lumpy" distribution of complex psychiatric phenotypes (including fear-circuitry disorders) may in some cases be accounted for by oligogenic (and not necessarily polygenic) transmission, and C) insights from the initial sequence of the chimpanzee genome and comparison with the human genome by the Chimpanzee Sequencing and Analysis Consortium published in late 2005. Neuroevolutionary insights relevant to fear circuitry symptoms that primarily emerge overconsolidationally (especially Combat related Posttraumatic Stress Disorder) are presented. Also introduced is a human-evolution-based principle for clustering innate fear traits. The "Neuroevolutionary Time-depth Principle" of innate fears proposed in this article may be useful in the development of a neuroevolution-based taxonomic re-clustering of stress-triggered and fear-circuitry disorders in DSM-V. Four broad clusters of evolved fear circuits are proposed based on their time-depths: 1) Mesozoic (mammalian-wide) circuits hardwired by wild-type alleles driven to fixation by Mesozoic selective sweeps; 2) Cenozoic (simian-wide) circuits relevant to many specific phobias; 3) mid Paleolithic and upper Paleolithic (Homo sapiens-specific) circuits (arguably resulting mostly from mate-choice-driven stabilizing selection); 4) Neolithic circuits (arguably mostly related to stabilizing selection driven by gene-culture co-evolution). More importantly, the author presents evolutionary perspectives on warzone-related PTSD, Combat-Stress Reaction, Combat-related Stress, Operational-Stress, and other deployment-stress-induced symptoms. The Neuroevolutionary Time-depth Principle presented in this article may help explain the dissimilar stress-resilience levels following different types of acute threat to survival of oneself or one's progency (aka DSM-III and DSM-V PTSD Criterion-A events). PTSD rates following exposure to lethal inter-group violence (combat, warzone exposure or intentionally caused disasters such as terrorism) are usually 5-10 times higher than rates following large-scale natural disasters such as forest fires, floods, hurricanes, volcanic eruptions, and earthquakes. The author predicts that both intentionally-caused large-scale bioevent-disasters, as well as natural bioevents such as SARS and avian flu pandemics will be an exception and are likely to be followed by PTSD rates approaching those that follow warzone exposure. During bioevents, Amygdala-driven and locus-coeruleus-driven epidemic pseudosomatic symptoms may be an order of magnitude more common than infection-caused cytokine-driven symptoms. Implications for the red cross and FEMA are discussed. It is also argued that hospital phobia as well as dog phobia, bird phobia and bat phobia require re-taxonomization in DSM-V in a new "overconsolidational disorders" category anchored around PTSD. The overconsolidational spectrum category may be conceptualized as straddling the fear circuitry spectrum disorders and the affective spectrum disorders categories, and may be a category for which Pitman's secondary prevention propranolol regimen may be specifically indicated as a "morning after pill" intervention. Predictions are presented regarding obsessive-compulsive disorder (OCD) (e.g., female-pattern hoarding vs. male-pattern hoarding) and "culture-bound" acute anxiety symptoms (taijin-kyofusho, koro, shuk yang, shook yong, suo yang, rok-joo, jinjinia-bemar, karoshi, gwarosa, Voodoo death). Also discussed are insights relevant to pseudoneurological symptoms and to the forthcoming Dissociative-Conversive disorders category in DSM-V, including what the author terms fright-triggered acute pseudo-localized symptoms (i.e., pseudoparalysis, pseudocerebellar imbalance, psychogenic blindness, pseudoseizures, and epidemic sociogenic illness). Speculations based on studies of the human abnormal-spindle-like, microcephaly-associated (ASPM) gene, the microcephaly primary autosomal recessive (MCPH) gene, and the forkhead box p2 (FOXP2) gene are made and incorporated into what is termed "The pre-FOXP2 Hypothesis of Blood-Injection-Injury Phobia." Finally, the author argues for a non-reductionistic fusion of "distal (evolutionary) neurobiology" with clinical "proximal neurobiology," utilizing neurological heuristics. It is noted that the value of re-clustering fear traits based on behavioral ethology, human-phylogenomics-derived endophenotypes and on ontogenomics (gene-environment interactions) can be confirmed or disconfirmed using epidemiological or twin studies and psychiatric genomics
Recommended from our members
Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression
Although depressed mood is a normal occurrence in response to adversity in all individuals, what distinguishes those who are vulnerable to major depressive disorder (MDD) is their inability to effectively regulate negative mood when it arises. Investigating the neural underpinnings of adaptive emotion regulation and the extent to which such processes are compromised in MDD may be helpful in understanding the pathophysiology of depression. We report results from a functional magnetic resonance imaging study demonstrating left-lateralized activation in the prefrontal cortex (PFC) when downregulating negative affect in nondepressed individuals, whereas depressed individuals showed bilateral PFC activation. Furthermore, during an effortful affective reappraisal task, nondepressed individuals showed an inverse relationship between activation in left ventrolateral PFC and the amygdala that is mediated by the ventromedial PFC (VMPFC). No such relationship was found for depressed individuals, who instead show a positive association between VMPFC and amygdala. Pupil dilation data suggest that those depressed patients who expend more effort to reappraise negative stimuli are characterized by accentuated activation in the amygdala, insula, and thalamus, whereas nondepressed individuals exhibit the opposite pattern. These findings indicate that a key feature underlying the pathophysiology of major depression is the counterproductive engagement of right prefrontal cortex and the lack of engagement of left lateral-ventromedial prefrontal circuitry important for the downregulation of amygdala responses to negative stimuli
Frontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents
Adolescent risk-taking is a public health issue that increases the odds of poor lifetime outcomes. One factor thought to influence adolescents' propensity for risk-taking is an enhanced sensitivity to appetitive cues, relative to an immature capacity to exert sufficient cognitive control. We tested this hypothesis by characterizing interactions among ventral striatal, dorsal striatal, and prefrontal cortical regions with varying appetitive load using fMRI scanning. Child, teen, and adult participants performed a go/no-go task with appetitive (happy faces) and neutral cues (calm faces). Impulse control to neutral cues showed linear improvement with age, whereas teens showed a nonlinear reduction in impulse control to appetitive cues. This performance decrement in teens was paralleled by enhanced activity in the ventral striatum. Prefrontal cortical recruitment correlated with overall accuracy and showed a linear response with age for no-go versus go trials. Connectivity analyses identified a ventral frontostriatal circuit including the inferior frontal gyrus and dorsal striatum during no-go versus go trials. Examining recruitment developmentally showed that teens had greater between-subject ventral-dorsal striatal coactivation relative to children and adults for happy no-go versus go trials. These findings implicate exaggerated ventral striatal representation of appetitive cues in adolescents relative to an intermediary cognitive control response. Connectivity and coactivity data suggest these systems communicate at the level of the dorsal striatum differentially across development. Biased responding in this system is one possible mechanism underlying heightened risk-taking during adolescence
- …
