93,023 research outputs found

    Online Human-Bot Interactions: Detection, Estimation, and Characterization

    Full text link
    Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network patterns, and activity time series. We benchmark the classification framework by using a publicly available dataset of Twitter bots. This training data is enriched by a manually annotated collection of active Twitter users that include both humans and bots of varying sophistication. Our models yield high accuracy and agreement with each other and can detect bots of different nature. Our estimates suggest that between 9% and 15% of active Twitter accounts are bots. Characterizing ties among accounts, we observe that simple bots tend to interact with bots that exhibit more human-like behaviors. Analysis of content flows reveals retweet and mention strategies adopted by bots to interact with different target groups. Using clustering analysis, we characterize several subclasses of accounts, including spammers, self promoters, and accounts that post content from connected applications.Comment: Accepted paper for ICWSM'17, 10 pages, 8 figures, 1 tabl

    Not all the bots are created equal:the Ordering Turing Test for the labelling of bots in MMORPGs

    Get PDF
    This article contributes to the research on bots in Social Media. It takes as its starting point an emerging perspective which proposes that we should abandon the investigation of the Turing Test and the functional aspects of bots in favor of studying the authentic and cooperative relationship between humans and bots. Contrary to this view, this article argues that Turing Tests are one of the ways in which authentic relationships between humans and bots take place. To understand this, this article introduces the concept of Ordering Turing Tests: these are sort of Turing Tests proposed by social actors for purposes of achieving social order when bots produce deviant behavior. An Ordering Turing Test is method for labeling deviance, whereby social actors can use this test to tell apart rule-abiding humans and rule-breaking bots. Using examples from Massively Multiplayer Online Role-Playing Games, this article illustrates how Ordering Turing Tests are proposed and justified by players and service providers. Data for the research comes from scientific literature on Machine Learning proposed for the identification of bots and from game forums and other player produced paratexts from the case study of the game Runescape

    A family of heuristics for agent-based elastic Cloud bag-of-tasks concurrent scheduling

    Get PDF
    The scheduling and execution of bag-of-tasks applications (BoTs) in Clouds is performed on sets of virtualized Cloud resources that start being exhausted right after their allocation disregarding whether tasks are being executed. In addition, BoTs may be executed in potentially heterogeneous sets of Cloud resources, which may be either previously allocated for a different and fixed number of hours or dynamically reallocated as needed. In this paper, a family of 14 scheduling heuristics for concurrently executing BoTs in Cloud environments is proposed. The Cloud scheduling heuristics are adapted to the resource allocation settings (e.g., 1-hour time slots) of Clouds by focusing on maximizing Cloud resource utilization based on the remaining allocation times of Cloud resources. Cloud scheduling heuristics supported by information about BoT tasks (e.g., task size) and/or Cloud resource performances are proposed. Additionally, scheduling heuristics that require no information of either Cloud resources or tasks are also proposed. The Cloud scheduling heuristics support the dynamic inclusion of new Cloud resources while scheduling and executing a given BoT without rescheduling. Furthermore, an elastic Cloud resource allocation mechanism that autonomously and dynamically reallocates Cloud resources on demand to BoT executions is proposed. Moreover, an agent-based Cloud BoT scheduling approach that supports concurrent and parallel scheduling and execution of BoTs, and concurrent and parallel dynamic selection and composition of Cloud resources (by making use of the well-known contract net protocol) from multiple and distributed Cloud providers is designed and implemented. Empirical results show that BoTs can be (i) efficiently executed by attaining similar (in some cases shorter) makespans to commonly used benchmark heuristics (e.g., Max–min), (ii) effectively executed by achieving a 100% success execution rate even with high BoT execution request rates and executing BoTs in a concurrent and parallel manner, and that (iii) BoTs are economically executed by elastically reallocating Cloud resources on demand
    corecore