1,037,191 research outputs found

    INJECTABLE HYBRID SYSTEM FOR STRONTIUM LOCAL DELIVERY TO PROMOTE BONE REGENERATION

    Get PDF
    In bone tissue regeneration strategies, injectable bone substitutes are very attractive since they can be applied with minimally invasive surgical procedures and can perfectly fill irregular defects created in cases of trauma, infection or tumor resection. These materials must combine adequate mechanical properties with the ability to induce new bone formation. Incorporating strontium (Sr) in bone substitute biomaterials may be a strategy to achieve high Sr concentrations, not in a systemic but in a local environment, taking advantage of the osteoanabolic and anti-osteoclastic activity of Sr, for the enhancement of new bone formation. In this context, the aim of the present work was to evaluate the response of a Sr-hybrid injectable system for bone regeneration, designed by our group, consisting of hydroxyapatite microspheres doped with Sr and an alginate vehicle crosslinked in situ with Sr, in an in vivo scenario. Two different animal models were used, rat (Wistar) and sheep (Merino Branco) critical sized bone defect. Non Sr-doped similar materials (Ca-hybrid) or empty defects were used as control. Sr-hybrid system led to an increased bone formation in both center and periphery of a rat critical sized defect compared to a non Sr–doped similar system, where new bone formation was restricted to the periphery. Moreover newly formed bone was identified as early as one week after its implantation in a sheep model. After eight weeks, the bone surrounded the microspheres, both in the periphery and in the center of the defect. Most importantly, the hybrid system provided a scaffold for cell migration and tissue ingrowth and offered structural support, as observed in both models. The effective improvement of local bone formation suggests that this might be a promising approach for bone regeneration, especially in osteoporotic conditions

    Gray-level co-occurrence matrix bone fracture detection

    Get PDF
    Problem statement: Currently doctors in orthopedic wards inspect the bone x-ray images according to their experience and knowledge in bone fracture analysis. Manual examination of x-rays has multitude drawbacks. The process is time-consuming and subjective. Approach: Since detection of fractures is an important orthopedics and radiologic problem and therefore a Computer Aided Detection(CAD) system should be developed to improve the scenario. In this study, a fracture detection CAD based on GLCM recognition could improve the current manual inspection of x-ray images system. The GLCM for fracture and non-fracture bone is computed and analysis is made. Features of Homogeneity, contrast, energy, correlation are calculated to classify the fractured bone. Results: 30 images of femur fractures have been tested, the result shows that the CAD system can differentiate the x-ray bone into fractured and nonfractured femur. The accuracy obtained from the system is 86.67. Conclusion: The CAD system is proved to be effective in classifying the digital radiograph of bone fracture. However the accuracy rate is not perfect, the performance of this system can be further improved using multiple features of GLCM and future works can be done on classifying the bone into different degree of fracture specifically

    Instrumentation for bone density measurement

    Get PDF
    Measurement system evaluates the integrated bone density over a specific cross section of bone. A digital computer converts stored bone scan data to equivalent aluminum calibration wedge thickness, and bone density is then integrated along the scan by using the trapezoidal approximation integration formula

    The EULAR–OMERACT rheumatoid arthritis MRI reference image atlas: the metacarpophalangeal joints

    Get PDF
    This paper presents the metacarpophalangeal (MCP) joint magnetic resonance images of the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas. The illustrations include synovitis in the MCP joints (OMERACT RA magnetic resonance imaging scoring system (RAMRIS), grades 0–3), bone oedema in the metacarpal head and the phalangeal base (grades 0–3), and bone erosion in the metacarpal head and the phalangeal base (grades 0–3, and examples of higher grades). The presented reference images can be used to guide scoring of MCP joints according to the OMERACT RA MRI scoring system

    Bone in vivo: Surface mapping technique

    Get PDF
    Bone surface mapping technique is proposed on the bases of two kinds of uniqueness of bone in vivo, (i) magnitude of the principal moments of inertia, (ii) the direction cosines of principal axes of inertia relative to inertia reference frame. We choose the principal axes of inertia as the bone coordinate system axes. The geographical marks such as the prime meridian of the bone in vivo are defined and methods such as tomographic reconstruction and boundary development are employed so that the surface of bone in vivo can be mapped. Experimental results show that the surface mapping technique can both reflect the shape and help study the surface changes of bone in vivo. The prospect of such research into the surface shape and changing laws of organ, tissue or cell will be promising.Comment: 9 pages, 6 figure

    Regional diversity in the murine cortical vascular network is revealed by synchrotron X-ray tomography and is amplified with age

    Get PDF
    Cortical bone is permeated by a system of pores, occupied by the blood supply and osteocytes. With ageing, bone mass reduction and disruption of the microstructure are associated with reduced vascular supply. Insight into the regulation of the blood supply to the bone could enhance the understanding of bone strength determinants and fracture healing. Using synchrotron radiation-based computed tomography, the distribution of vascular canals and osteocyte lacunae was assessed in murine cortical bone and the influence of age on these parameters was investigated. The tibiofibular junction from 15-week- and 10-month-old female C57BL/6J mice were imaged post-mortem. Vascular canals and three-dimensional spatial relationships between osteocyte lacunae and bone surfaces were computed for both age groups. At 15 weeks, the posterior region of the tibiofibular junction had a higher vascular canal volume density than the anterior, lateral and medial regions. Intracortical vascular networks in anterior and posterior regions were also different, with connectedness in the posterior higher than the anterior at 15 weeks. By 10 months, cortices were thinner, with cortical area fraction and vascular density reduced, but only in the posterior cortex. This provided the first evidence of age-related effects on murine bone porosity due to the location of the intracortical vasculature. Targeting the vasculature to modulate bone porosity could provide an effective way to treat degenerative bone diseases, such as osteoporosis

    Micro-CT Characterization of Human Trabecular Bone in Osteogenesis Imperfecta

    Get PDF
    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment

    Development of Bone Targeting Drugs.

    Get PDF
    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca(2+). The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments

    A perfusion culture system for assessing bone marrow stromal cell differentiation on PLGA scaffolds for bone repair

    Get PDF
    Biomaterials development for bone repair is currently hindered by the lack of physiologically relevant in vitro testing systems. Here we describe the novel use of a bi-directional perfusion bioreactor to support the long term culture of human bone marrow stromal cells (BMSCs) differentiated on polylactic co-glycolic acid (PLGA). Primary human BMSCs were seeded onto porous PLGA scaffolds and cultured in static vs. perfusion culture conditions for 21 days in osteogenic vs. control media. PLGA scaffolds were osteoconductive, supporting a mature osteogenic phenotype as shown by the upregulation of Runx2 and the early osteocyte marker E11. Perfusion culture enhanced the expression of osteogenic genes Osteocalcin and Osteopontin. Extracellular matrix deposition and mineralisation were spatially regulated within PLGA scaffolds in a donor dependant manner. This, together with the observed upregulation of Collagen type X suggested an environment permissive for the study of differentiation pathways associated with both intramembranous and endochondral ossification routes of bone healing. This culture system offers a platform to assess BMSC behavior on candidate biomaterials under physiologically relevant conditions. Use of this system may improve our understanding of the environmental cues orchestrating BMSC differentiation and enable fine tuning of biomaterial design as we develop tissue-engineered strategies for bone regeneration
    corecore