4,459,262 research outputs found

    Universal pilot restraint suit and body support therefor Patent

    Get PDF
    Astronaut restraint suit for high acceleration protectio

    The body as unwarranted life support: a new perspective on euthanasia

    Get PDF
    It is widely accepted in clinical ethics that removing a patient from a ventilator at the patient's request is ethically permissible. This constitutes voluntary passive euthanasia. However, voluntary active euthanasia, such as giving a patient a lethal overdose with the intention of ending that patient's life, is ethically proscribed, as is assisted suicide, such as providing a patient with lethal pills or a lethal infusion. Proponents of voluntary active euthanasia and assisted suicide have argued that the distinction between killing and letting die is flawed and that there is no real difference between actively ending someone's life and "merely" allowing them to die. This paper shows that, although this view is correct, there is even less of a distinction than is commonly acknowledged in the literature. It does so by suggesting a new perspective that more accurately reflects the moral features of end-of-life situations: if a patient is mentally competent and wants to die, his body itself constitutes unwarranted life support unfairly prolonging his or her mental life

    Implicit measures of actual versus ideal body image : relations with self-reported body dissatisfaction and dieting behaviors

    Get PDF
    Body dissatisfaction refers to a negative appreciation of one’s own body stemming from a discrepancy between how one perceives his/her body (actual body image) and how he/she wants it to be (ideal body image). To circumvent the limitations of self-report measures of body image, measures were developed that allow for a distinction between actual and ideal body image at the implicit level. The first goal of the present study was to investigate whether self-reported body dissatisfaction is related to implicit measures of actual and ideal body image as captured by the Relational Responding Task (RRT). Secondly, we examined whether these RRT measures were related to several indices of dieting behavior. Women high in body dissatisfaction (n = 30) were characterized by relatively strong implicit I-am-fat beliefs, whereas their implicit I-want-to-be-thinner beliefs were similar to individuals low in body dissatisfaction (n = 37). Implicit body image beliefs showed no added value over explicit body image beliefs in predicting body dissatisfaction and dieting behavior. These findings support the idea that the interplay between ideal and actual body image drives (self-reported) body dissatisfaction. However, strong support for the view that it would be critical to differentiate between explicit and implicit body image beliefs is missing

    Testing mechanisms of Bergmann’s rule: Phenotypic decline but no genetic change in body size in three posserine bird populations

    Get PDF
    Bergmann’s rule predicts a decrease in body size with increasing temperature and has much empirical support. Surprisingly, we know very little about whether “Bergmann size clines” are due to a genetic response or are a consequence of phenotypic plasticity. Here, we use data on body size (mass and tarsus length) from three long-term (1979–2008) study populations of great tits (Parus major) that experienced a temperature increase to examine mechanisms behind Bergmann’s rule. We show that adult body mass decreased over the study period in all populations and that tarsus length increased in one population. Both body mass and tarsus length were heritable and under weak positive directional selection, predicting an increase, rather than a decrease, in body mass. There was no support for microevolutionary change, and thus the observed declines in body mass were likely a result of phenotypic plasticity. Interestingly, this plasticity was not in direct response to temperature changes but seemed to be due to changes in prey dynamics. Our results caution against interpreting recent phenotypic body size declines as adaptive evolutionary responses to temperature changes and highlight the importance of considering alternative environmental factors when testing size clines.

    Compliant walker

    Get PDF
    A compliant walker is provided for humans having limited use of their legs and lower back. It includes an upright wheel frame which at least partially surrounds an upright user wearing a partial body harness. It is attached to the frame by means of cable compliant apparatus consisting of sets of cable segments and angle bracket members connected between opposite side members of the frame and adjacent side portions of the harness. Novelty is believed to exist in the combination of a wheeled frame including a side support structure, a body harness, and compliance means connecting the body harness to the side support structure for flexibility holding and supporting a person in a substantially upright position when the user sags in the frame when taking weight off the lower extremities

    Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention

    Get PDF
    Pressure ulcer is a common problem for today’s healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body, blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments

    Sapporo2: A versatile direct NN-body library

    Full text link
    Astrophysical direct NN-body methods have been one of the first production algorithms to be implemented using NVIDIA's CUDA architecture. Now, almost seven years later, the GPU is the most used accelerator device in astronomy for simulating stellar systems. In this paper we present the implementation of the Sapporo2 NN-body library, which allows researchers to use the GPU for NN-body simulations with little to no effort. The first version, released five years ago, is actively used, but lacks advanced features and versatility in numerical precision and support for higher order integrators. In this updated version we have rebuilt the code from scratch and added support for OpenCL, multi-precision and higher order integrators. We show how to tune these codes for different GPU architectures and present how to continue utilizing the GPU optimal even when only a small number of particles (N<100N < 100) is integrated. This careful tuning allows Sapporo2 to be faster than Sapporo1 even with the added options and double precision data loads. The code runs on a range of NVIDIA and AMD GPUs in single and double precision accuracy. With the addition of OpenCL support the library is also able to run on CPUs and other accelerators that support OpenCL.Comment: 15 pages, 7 figures. Accepted for publication in Computational Astrophysics and Cosmolog

    Governing the post mortem procurement of human body material for research

    Get PDF
    Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent

    The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles

    Get PDF
    The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300‐fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle‐tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross‐sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength is consistent with behavioural changes in larger felids, such as a reduction of maximal speed and other aspects of locomotor abilities
    corecore