503,785 research outputs found

    Multiple Description Coding of Discrete Ergodic Sources

    Get PDF
    We investigate the problem of Multiple Description (MD) coding of discrete ergodic processes. We introduce the notion of MD stationary coding, and characterize its relationship to the conventional block MD coding. In stationary coding, in addition to the two rate constraints normally considered in the MD problem, we consider another rate constraint which reflects the conditional entropy of the process generated by the third decoder given the reconstructions of the two other decoders. The relationship that we establish between stationary and block MD coding enables us to devise a universal algorithm for MD coding of discrete ergodic sources, based on simulated annealing ideas that were recently proven useful for the standard rate distortion problem.Comment: 6 pages, 3 figures, presented at 2009 Allerton Conference on Communication, Control and Computin

    フラクタル符号化特徴量を用いた類似画像検索およびオブジェクト検出手法の検討

    Get PDF
    Fractal image coding is a block-based scheme that exploits the self-similarity hiding with an image. Fractal codes are quantitative measurements of the self-similarity of the image, and collage error distribution of block characterizes the degree of self-similarity in it. Furthermore, fractal codes can be used to obtain a practical image indexing system because of its compactness and stability. The most important reason using fractal codes is able to deal with the images in compressed form. Thus fractal indexing is suitable for use with large database. In this study, we propose a new image retrieval system and object detection method based on fractal coding features that are collage error distribution and block partition structure in fractal codes. Experimental results show that the proposed method achieves a high precision tracking which is faster than MPEG method

    Convolutional Sparse Representations with Gradient Penalties

    Full text link
    While convolutional sparse representations enjoy a number of useful properties, they have received limited attention for image reconstruction problems. The present paper compares the performance of block-based and convolutional sparse representations in the removal of Gaussian white noise. While the usual formulation of the convolutional sparse coding problem is slightly inferior to the block-based representations in this problem, the performance of the convolutional form can be boosted beyond that of the block-based form by the inclusion of suitable penalties on the gradients of the coefficient maps

    Bilayer Protograph Codes for Half-Duplex Relay Channels

    Get PDF
    Despite encouraging advances in the design of relay codes, several important challenges remain. Many of the existing LDPC relay codes are tightly optimized for fixed channel conditions and not easily adapted without extensive re-optimization of the code. Some have high encoding complexity and some need long block lengths to approach capacity. This paper presents a high-performance protograph-based LDPC coding scheme for the half-duplex relay channel that addresses simultaneously several important issues: structured coding that permits easy design, low encoding complexity, embedded structure for convenient adaptation to various channel conditions, and performance close to capacity with a reasonable block length. The application of the coding structure to multi-relay networks is demonstrated. Finally, a simple new methodology for evaluating the end-to-end error performance of relay coding systems is developed and used to highlight the performance of the proposed codes.Comment: Accepted in IEEE Trans. Wireless Com

    Model-independent rate control for intra-coding based on piecewise linear approximations

    Get PDF
    This paper proposes a rate control (RC) algorithm for intra-coded sequences (I-frames) within the context of block-based predictive transform coding that departs from using trained models to approximate the rate-distortion (R-D) characteristics of the video sequence. Our algorithm employs piecewise linear approximations of the rate-distortion (R-D) curve of a frame at the block-level. Specifically, it employs information about the rate and distortion of already compressed blocks within the current frame to linearly approximate the slope of the R-D curve of each block. The proposed algorithm is implemented in the High-Efficiency Video Coding (H.265/HEVC) standard and compared with its current RC algorithm, which is based on a trained model. Evaluations on a variety of intra-coded sequences show that the proposed RC algorithm not only attains the overall target bit rate more accurately than the RC algorithm used by H.265/HEVC algorithm but is also capable of encoding each I-frame at a more constant bit rate according to the overall bit budget
    corecore