45,913 research outputs found
Nanoscale integration of single cell biologics discovery processes using optofluidic manipulation and monitoring.
The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of "lab-on-a-chip" methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development. Several microscale bioprocess technologies have been established that incrementally address these needs, yet each is inflexibly designed for a very specific process thus limiting an integrated holistic application. A more fully integrated nanoscale approach that incorporates manipulation, culture, analytics, and traceable digital record keeping of thousands of single cells in a relevant nanoenvironment would be a transformative technology capable of keeping pace with today's rapid and complex drug discovery demands. The recent advent of optical manipulation of cells using light-induced electrokinetics with micro- and nanoscale cell culture is poised to revolutionize both fundamental and applied biological research. In this review, we summarize the current state of the art for optical manipulation techniques and discuss emerging biological applications of this technology. In particular, we focus on promising prospects for drug discovery workflows, including antibody discovery, bioassay development, antibody engineering, and cell line development, which are enabled by the automation and industrialization of an integrated optoelectronic single-cell manipulation and culture platform. Continued development of such platforms will be well positioned to overcome many of the challenges currently associated with fragmented, low-throughput bioprocess workflows in biopharma and life science research
Bioprocess Development for Lantibiotic Ruminococcin-A Production in Escherichia coli and Kinetic Insights Into LanM Enzymes Catalysis
Ruminococcin-A (RumA) is a peptide antibiotic with post-translational modifications including thioether cross-links formed from non-canonical amino acids, called lanthionines, synthesized by a dedicated lanthionine-generating enzyme RumM. RumA is naturally produced by Ruminococcus gnavus, which is part of the normal bacterial flora in the human gut. High activity of RumA against pathogenic Clostridia has been reported, thus allowing potential exploitation of RumA for clinical applications. However, purifying RumA from R. gnavus is challenging due to low production yields (120 mg L–1 for the chimeric construct and >150 mg L–1 for RumM. The correlation observed between microscale and lab-scale bioreactor cultivations suggests that the process is robust and realistically applicable to industrial-scale conditions.DFG, 53182490, EXC 314: Unifying Concepts in CatalysisDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli
Economic analysis of royalactin production under uncertainty: Evaluating the effect of parameter optimization.
Royalactin is a protein with several different potential uses in humans. Research, in insects and in mammalian cells, has shown that it can accelerate cell division and prevent apoptosis. The method of action is through the use of the epidermal growth factor receptor, which is present in humans. Potential use in humans could be to lower cholesterolemic levels in blood, and to elicit similar effects to those seen in bees, e.g., increased lifespan. Mass production of Royalactin has not been accomplished, though a recent article presented a Pichia pastoris fermentation and recovery by aqueous two-phase systems at laboratory scale as a possible basis for production. Economic modelling is a useful tool with which compare possible outcomes for the production of such a molecule and in particular, to locate areas where additional research is needed and optimization may be required. This study uses the BioSolve software to perform an economic analysis on the scale-up of the putative process for Royalactin. The key parameters affecting the cost of production were located via a sensitivity analysis and then evaluated by Monte Carlo analysis. Results show that if titer is not optimized the strategy to maintain a low cost of goods is process oriented. After optimization of this parameter the strategy changes to a product-oriented and the target output becomes the critical parameter determining the cost of goods. This study serves to provide a framework for the evaluation of strategies for future production of Royalactin, by analyzing the factors that influence its cost of manufacture. © 2015 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 2015
Heterogeneity in pure microbial systems: experimental measurements and modeling
Cellular heterogeneity influences bioprocess performance in ways that until date are not completely elucidated. In order to account for this phenomenon in the design and operation of bioprocesses, reliable analytical and mathematical descriptions are required. We present an overview of the single cell analysis, and the mathematical modeling frameworks that have potential to be used in bioprocess control and optimization, in particular for microbial processes. In order to be suitable for bioprocess monitoring, experimental methods need to be high throughput and to require relatively short processing time. One such method used successfully under dynamic conditions is flow cytometry. Population balance and individual based models are suitable modeling options, the latter one having in particular a good potential to integrate the various data collected through experimentation. This will be highly beneficial for appropriate process design and scale up as a more rigorous approach may prevent a priori unwanted performance losses. It will also help progressing synthetic biology applications to industrial scale
ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project
Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production
Iowa Innovators, June 2011
The “Iowa Innovators” series is a joint project of the Iowa Newspaper Association and the Iowa Department of Economic Development (IDED). The series is an outgrowth of an idea from member INA publishers. “Iowa Innovators” articles describe initiatives that Iowa communities have used to improve their ability to attract business and industry and demonstrate community innovation. The articles also describe Iowa companies on the leading edge of technology, business expansion, workforce development and recycling
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis Project
Fiscal year 1987 research activities and accomplishments for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division are presented. The project's technical activities were organized into three work elements. The Molecular Modeling and Applied Genetics work element includes modeling and simulation studies to verify a dynamic model of the enzyme carboxypeptidase; plasmid stabilization by chromosomal integration; growth and stability characteristics of plasmid-containing cells; and determination of optional production parameters for hyper-production of polyphenol oxidase. The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields, and lower separation energetics. The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the economics and energetics of a given biocatalyst process
UTILISING Zn AND Cu PRODU T IN THE CORN MEAL SUBSTRATE AT Saccharomyces cerev s ae BIOPRO ESS AND ITS IMPLEMENTATION ON INTERNAL QUALITY OF BROILER
This research was conducte to find out the effect and optimal percentage of adding Zn and Cu
proteinat supplement product of fermentation by Saccharomyces cerev s ae in the ration on internal
quality of the broiler.The experiment use 125 broiler day ol chicken with a Completely Randomize
Design.The ration treatments were R0 (control),R1 (99%R0 +1%supplement Zn and Cu proteinat),R2
(98%R0 +2%supplement Zn and Cu proteinat),R3 (97%R0 +3%supplement Zn and Cu proteinat)and
R4 (96%R0 +4%supplement Zn and Cu proteinat)where each treatment was repeate five times and
each replication consiste of five broiler chicks.Variable analysis were body cut weight,carcass
percentage,liver relative weight,and the content of cholesterol broiler meat.Conclusion of the research
showe that by using 3%of Zn and Cu proteinat supplement substrat in the ration gave the best internal
quality of broiler,increase body cut weight,carcass percentage,otherwise liver relative weight and the
content of cholesterol broiler meat were normal.
Keywords :Zn and Cu prote nat supplement,rat ons ,bro ler nternal qual t
Data-driven Soft Sensors in the Process Industry
In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work
- …
