209,379 research outputs found
A System for Accessible Artificial Intelligence
While artificial intelligence (AI) has become widespread, many commercial AI
systems are not yet accessible to individual researchers nor the general public
due to the deep knowledge of the systems required to use them. We believe that
AI has matured to the point where it should be an accessible technology for
everyone. We present an ongoing project whose ultimate goal is to deliver an
open source, user-friendly AI system that is specialized for machine learning
analysis of complex data in the biomedical and health care domains. We discuss
how genetic programming can aid in this endeavor, and highlight specific
examples where genetic programming has automated machine learning analyses in
previous projects.Comment: 14 pages, 5 figures, submitted to Genetic Programming Theory and
Practice 2017 worksho
Bioinformatics advances in saliva diagnostics
There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance
basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval,
integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva diagnostics made possible by the Saliva Ontology and SDxMart
Communication channel analysis and real time compressed sensing for high density neural recording devices
Next generation neural recording and Brain-
Machine Interface (BMI) devices call for high density or distributed
systems with more than 1000 recording sites. As the
recording site density grows, the device generates data on the
scale of several hundred megabits per second (Mbps). Transmitting
such large amounts of data induces significant power
consumption and heat dissipation for the implanted electronics.
Facing these constraints, efficient on-chip compression techniques
become essential to the reduction of implanted systems power
consumption. This paper analyzes the communication channel
constraints for high density neural recording devices. This paper
then quantifies the improvement on communication channel
using efficient on-chip compression methods. Finally, This paper
describes a Compressed Sensing (CS) based system that can
reduce the data rate by > 10x times while using power on
the order of a few hundred nW per recording channel
- …
