13,975 research outputs found
Liquid chromatographic strategies for separation of bioactive compounds in food matrices
Nowadays, there is an increasing attention for nutraceuticals and, in general, bioactive compounds naturally present in food. Indeed, the possibility of preserving human health and preventing disease (e.g., cardiovascular diseases, cancer etc.) by the intake of healthy food is attractive for both consumers and food industries. In turn, research in this field was also prompted significantly, with the aim of characterizing these bioactive compounds and ascribe to them a specific activity. The bioactive compounds can belong to several chemical classes. However, their chemical diversity and presence in complex matrices, such as food, make it challenging both their isolation and characterization. To tackle this issue, efficient separation systems are needed, which are mainly based on chromatography. In this context, this mini-review aims to provide the reader with an overview of the most relevant and recent approaches for the separation of the most common bioactive compounds in food, in particular polyphenols, phenols, carotenoids, and peptides, by liquid chromatography approaches. © 2018 by the authors
Smart systems related to polypeptide sequences
Increasing interest for the application of polypeptide-based smart systems in the biomedical field has developed due to the advantages given by the peptidic sequence. This is due to characteristics of these systems, which include: biocompatibility, potential control of degradation, capability to provide a rich repertoire of biologically specific interactions, feasibility to self-assemble, possibility to combine different functionalities, and capability to give an environmentally responsive behavior. Recently, applications concerning the development of these systems are receiving greater attention since a targeted and programmable release of drugs (e.g. anti-cancer agents) can be achieved. Block copolymers are discussed due to their capability to render differently assembled architectures. Hybrid systems based on silica nanoparticles are also discussed. In both cases, the selected systems must be able to undergo fast changes in properties like solubility, shape, and dissociation or swelling capabilities. This review is structured in different chapters which explain the most recent advances on smart systems depending on the stimuli to which they are sensitive. Amphiphilic block copolymers based on polyanionic or polycationic peptides are, for example, typically employed for obtaining pH-responsive systems. Elastin-like polypeptides are usually used as thermoresponsive polymers, but performance can be increased by using techniques which utilize layer-by-layer electrostatic self-assembly. This approach offers a great potential to create multilayered systems, including nanocapsules, with different functionality. Recent strategies developed to get redox-, magnetic-, ultrasound-, enzyme-, light-and electric-responsive systems are extensively discussed. Finally, some indications concerning the possibilities of multi-responsive systems are discussed.Postprint (published version
Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules
Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But while effects of high CO₂ conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs (Carcinus maenas) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor-binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO₂ conditions were found to play a less significant role in influencing the investigated behaviour. From our results we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic pH conditions
Nanostructures by Self-assembling Peptide Amphiphile as Potential Selective Drug Carriers
The self-assembling behaviour, at physiological pH, of the amphiphile peptide (C18)(2)L5CCK8 in nanostructures is reported. Stable aggregates presenting a critical micellar concentration of 2 X 10(-6) mol kg(-1), and characterized by water exposed CCK8 peptide in P-sheet conformation, are obtained. Small angle neutron scattering experiments are indicative for a 3D structure with dimensions >= 100 nm. AFM images confirm the presence of nanostructures. Fluorescence experiments indicating the sequestration of pyrene, chosen as drug model, and the anticancer Doxorubicin within the nanostructures are reported
Peptide-based microcapsules obtained by self-assembly and microfluidics as controlled environments for cell culture
Funding for this study was provided by the Portuguese Foundation for Science and Technology (FCT, grant PTDC/EBB-BIO/ 114523/2009). D. S. Ferreira gratefully acknowledges FCT for the PhD scholarship (SFRH/BD/44977/2008)
Programmable biomaterials for dynamic and responsive drug delivery
Biomaterials are continually being designed that enable new methods for interacting dynamically with cell and tissues, in turn unlocking new capabilities in areas ranging from drug delivery to regenerative medicine. In this review, we explore some of the recent advances being made in regards to programming biomaterials for improved drug delivery, with a focus on cancer and infection. We begin by explaining several of the underlying concepts that are being used to design this new wave of drug delivery vehicles, followed by examining recent materials systems that are able to coordinate the temporal delivery of multiple therapeutics, dynamically respond to changing tissue environments, and reprogram their bioactivity over time
UV-VIS absorption spectra at high pressure of C-phycocyanin and allophycocyanin from Mastigocladus laminosus
- …
