190,877 research outputs found

    Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica

    Full text link
    The environment near super massive black holes (SMBHs) in galactic nuclei contain a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits in respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai-cycles). During periapsis approach, at the highest eccentricities during the Kozai-cycles, gravitational wave emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries which do not reside near a SMBH. The close environment of SMBHs could therefore serve as catalyst for the inspiral and coalescence of binaries, and strongly affect their orbital properties. Such compact binaries would be detectable as gravitational wave (GW) sources by the next generation of GW detectors (e.g. advanced- LIGO). About 0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbit that are still very eccentric (e>~0.5). The efficient gravitational wave analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the MBH could evolve through a complex dynamical (non-secular) evolution leading to emission of several GW pulses during only a few yrs (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.Comment: 15 pages, 7 Figures. ApJ accepte

    A Connection between Submillimeter Continuum Flux and Separation in Young Binaries

    Full text link
    We have made sensitive 800-micron continuum observations of low-mass, pre-main sequence (PMS) binary stars with projected separations less than 25 AU in Taurus-Auriga to study disks in the young binary environment. We did not detect any of the observed binaries, with typical 3-sigma upper limits of about 30 mJy. Combining our observations with previous 1300-micron observations of PMS Taurus binaries by Beckwith et al. (1990) and others, we find that the submillimeter fluxes from binaries with projected separations between 1 AU and 50 AU are significantly lower than fluxes from binaries with projected separations > 50 AU. The submillimeter fluxes from the wider binaries are consistent with those of PMS single stars. This may indicate lower disk surface densities and masses in the close binaries. Alternatively, dynamical clearing of gaps by close binaries is marginally sufficient to lower their submillimeter fluxes to the observed levels, even without reduction of surface densities elsewhere in the disks.Comment: 12 pages, uuencoded compressed postscript with figures; Wisconsin Astrophysics 526; to appear in ApJ Letter

    Analysis of the eclipsing binaries in the LMC discovered by OGLE: Period distribution and frequency of the short-period binaries

    Get PDF
    We review the results of our analysis of the OGLE LMC eclipsing binaries (Mazeh, Tamuz & North 2006), using EBAS -- Eclipsing Binary Automated Solver, an automated algorithm to fit lightcurves of eclipsing binaries (Tamuz, Mazeh & North 2006). After being corrected for observational selection effects, the set of detected eclipsing binaries yielded the period distribution and the frequency of all LMC short-period binaries, and not just the eclipsing systems. Somewhat surprisingly, the period distribution is consistent with a flat distribution in log P between 2 and 10 days. The total number of binaries with periods shorter than 10 days in the LMC was estimated to be about 5000. This figure led us to suggest that (0.7 +- 0.4)% of the main-sequence A- and B-type stars are found in binaries with periods shorter than 10 days. This frequency is substantially smaller than the fraction of binaries found by small Galactic radial-velocity surveys of B stars.Comment: 6 pages, 2 figures, submitted to Conference Proceedings of IAU Symp. 24

    Cool Companions to White Dwarfs from the 2MASS Second Incremental Data Release

    Get PDF
    We present near-infrared magnitudes for all white dwarfs (selected from the catalog of McCook & Sion) contained in the 2 Micron All Sky Survey Second Incremental Data Release(2MASS 2IDR). We show that the near-IR color-color diagram is an effective means of identifying candidate binary stars containing a WD and a low mass main sequence star. The loci of single WDs and WD + red dwarf binaries occupy distinct regions of the near-IR color-color diagram. We recovered all known unresolved WD + red dwarf binaries located in the 2IDR sky coverage, and also identified as many new candidate binaries (47 new candidates out of 95 total). Using observational near-IR data for WDs and M-L dwarfs, we have compared a sample of simulated WD + red dwarf binaries with our 2MASS data. The colors of the simulated binaries are dominated by the low mass companion through the late-M to early-L spectral types. As the spectral type of the companion becomes progressively later, however, the colors of unresolved binaries become progressively bluer. Binaries containing the lowest mass companions will be difficult to distinguish from single WDs solely on the basis of their near-IR colors.Comment: 18 pages, including 2 figures, accepted for publication in Ap
    corecore