78,794 research outputs found

    Nanoindentation of a circular sheet of bilayer graphene

    Full text link
    Nanoindentation of bilayer graphene is studied using molecular dynamics simulations. We compared our simulation results with those from elasticity theory as based on the nonlinear F\"{o}ppl-Hencky equations with rigid boundary condition. The force deflection values of bilayer graphene are compered to those of monolayer graphene. Young's modulus of bilayer graphene is estimated to be 0.8 TPa which is close to the value for graphite. Moreover, an almost flat bilayer membrane at low temperature under central load has a 14% smaller Young's modulus as compared to the one at room temperature

    Shape fluctuations and elastic properties of two-component bilayer membranes

    Full text link
    The elastic properties of two-component bilayer membranes are studied using a coarse grain model for amphiphilic molecules. The two species of amphiphiles considered here differ only in their length. Molecular Dynamics simulations are performed in order to analyze the shape fluctuations of the two-component bilayer membranes and to determine their bending rigidity. Both the bending rigidity and its inverse are found to be nonmonotonic functions of the mole fraction xBx_{\rm B} of the shorter B-amphiphiles and, thus, do not satisfy a simple lever rule. The intrinsic area of the bilayer also exhibits a nonmonotonic dependence on xBx_{\rm B} and a maximum close to xB1/2x_{\rm B} \simeq 1/2.Comment: To appear on Europhysics Letter

    Convergence of energy-dependent incommensurate antiferromagnetic neutron scattering peaks to commensurate resonance in underdoped bilayer cuprates

    Full text link
    The recently discovered coexistence of incommensurate antiferromagnetic neutron scattering peaks and commensurate resonance in underdoped YBa2_2Cu3_3O6+x_{6+x} is calling for an explanation. Within the t-J model, the doping and energy dependence of the spin dynamics of the underdoped bilayer cuprates in the normal state is studied based on the fermion-spin theory by considering the bilayer interactions. Incommensurate peaks are found at [(1±δ)π,π][(1\pm\delta)\pi,\pi] and [π,(1±δ)π][\pi,(1\pm\delta)\pi] at low energies with δ\delta initially increasing with doping at low dopings and then saturating at higher dopings. These incommensurate peaks are suppressed, and the parameter δ\delta is reduced with increasing energy. Eventually it converges to the [π,π][\pi,\pi] resonance peak. Thus the recently observed coexistence is interpreted in terms of bilayer interactions.Comment: 15 pages, Revtex, five figures are included, accepted for publication in Phys. Rev.

    A simple atomistic model for the simulation of the gel phase of lipid bilayers

    Get PDF
    In this paper we present the results of a large-scale numerical investigation of structural properties of a model of cell membrane, simulated as a bilayer of flexible molecules in vacuum. The study was performed by carrying out extensive Molecular Dynamics simulations, in the (NVE) micro-canonical ensemble, of two systems of different sizes (2x32 and 2x256 molecules), over a fairly large set of temperatures and densities, using parallel platforms and more standard serial computers. Depending on the dimension of the system, the dynamics was followed for physical times that go from few hundred of picoseconds for the largest system to 5--10 nanoseconds for the smallest one. We find that the bilayer remains stable even in the absence of water and neglecting Coulomb interactions in the whole range of temperatures and densities we have investigated. The extension of the region of physical parameters that we have explored has allowed us to study significant points in the phase diagram of the bilayer and to expose marked structural changes as density and temperature are varied, which are interpreted as the system passing from a crystal to a gel phase.Comment: 41 pages, 13 figure

    Collective dynamics in phospholipid bilayers investigated by inelastic neutron scattering: Exploring the dynamics of biological membranes with neutrons

    Full text link
    We present the first inelastic neutron scattering study of the short wavelength dynamics in a phospholipid bilayer. We show that inelastic neutron scattering using a triple-axis spectrometer at the high flux reactor of the ILL yields the necessary resolution and signal to determine the dynamics of model membranes. The results can quantitatively be compared to recent Molecular Dynamics simulations. Reflectivity, in-plane correlations and the corresponding dynamics can be measured simultaneously to gain a maximum amount of information. With this method, dispersion relations can be measured with a high energy resolution. Structure and dynamics in phospholipid bilayers, and the relation between them, can be studied on a molecular length scale
    corecore