1,173,542 research outputs found

    Towards Big data processing in IoT: network management for online edge data processing

    Full text link
    Heavy data load and wide cover range have always been crucial problems for internet of things (IoT). However, in mobile-edge computing (MEC) network, the huge data can be partly processed at the edge. In this paper, a MEC-based big data analysis network is discussed. The raw data generated by distributed network terminals are collected and processed by edge servers. The edge servers split out a large sum of redundant data and transmit extracted information to the center cloud for further analysis. However, for consideration of limited edge computation ability, part of the raw data in huge data sources may be directly transmitted to the cloud. To manage limited resources online, we propose an algorithm based on Lyapunov optimization to jointly optimize the policy of edge processor frequency, transmission power and bandwidth allocation. The algorithm aims at stabilizing data processing delay and saving energy without knowing probability distributions of data sources. The proposed network management algorithm may contribute to big data processing in future IoT

    Big Data Ethics in Research

    Get PDF
    The main problems faced by scientists in working with Big Data sets, highlighting the main ethical issues, taking into account the legislation of the European Union. After a brief Introduction to Big Data, the Technology section presents specific research applications. There is an approach to the main philosophical issues in Philosophical Aspects, and Legal Aspects with specific ethical issues in the EU Regulation on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (Data Protection Directive - General Data Protection Regulation, "GDPR"). The Ethics Issues section details the specific aspects of Big Data. After a brief section of Big Data Research, I finalize my work with the presentation of Conclusions on research ethics in working with Big Data. CONTENTS: Abstract 1. Introduction - 1.1 Definitions - 1.2 Big Data dimensions 2. Technology - 2.1 Applications - - 2.1.1 In research 3. Philosophical aspects 4. Legal aspects - 4.1 GDPR - - Stages of processing of personal data - - Principles of data processing - - Privacy policy and transparency - - Purposes of data processing - - Design and implicit confidentiality - - The (legal) paradox of Big Data 5. Ethical issues - Ethics in research - Awareness - Consent - Control - Transparency - Trust - Ownership - Surveillance and security - Digital identity - Tailored reality - De-identification - Digital inequality - Privacy 6. Big Data research Conclusions Bibliography DOI: 10.13140/RG.2.2.11054.4640
    corecore