36,604 research outputs found
Impact of pine looper defoliation in Scots pine
Widespread defoliation of forests caused by insects or fungi cause economic losses throughout the world. Successful outbreak management involves cost/benefit estimation and requires knowledge of potential yield losses. Currently, such knowledge is scarce. This thesis evaluates the significance of single-year defoliation by the pine looper moth (Bupalus piniaria L.) (Lepidoptera: Geometridae) and secondary attack by the pine shoot beetle (Tomicus piniperda L.) (Coleoptera: Scolytinae) for yield losses in Scots pine (Pinus sylvestris L.). In a seven-year study, tree mortality and growth losses were quantified after a B. piniaria outbreak with a subsequent T. piniperda infestation at Hökensås in 1996. Secondary attack by T. piniperda was also studied in a Scots pine stand at Fredriksberg, infested by Gremmeniella abietina (Lagerberg) Morelet. in 2001. Tree mortality at Hökensås mainly occurred in areas with an average defoliation intensity of 90-100%. Tree mortality averaged 25%, and the “defoliation threshold” for tree survival was found to be 90% defoliation. Tree mortality peaked two years after the defoliation event, which coincided with high levels of pine shoot beetles. Involvement of T. piniperda in tree mortality increased with time since defoliation, and tree susceptibility to beetle attack increased with increasing defoliation intensity and decreasing dominance status of trees. As foliage of trees recovered, fewer trees were susceptible to beetle attack, and ultimately, beetle attacks ended as breeding substrate was depleted. Tree susceptibility to beetle attack was a function of tree vigour and beetle density. Growth losses at the Hökensås site were a combined effect of pine looper defoliation and shoot pruning by T. piniperda. Radial, height and volume growth losses were proportional to defoliation intensity. Whereas radial growth was little affected by beetle-induced shoot pruning, height growth was severely affected by beetle-induced damage to leading shoots. Growth losses alone, excluding tree mortality, were large enough to economically justify control of the pine looper outbreak had the outbreak been prevented in 1996. At Fredriksberg, T. piniperda colonised trees that would have survived the damage caused by G. abietina. However, trees with 90-100% foliage losses died because of the damage caused by G. abietina alone, and tree survival seemed to require that trees retained at least 20% of full foliage
Pupal and Adult Parameters as Potential Indicators of Cottonwood Leaf Beetle (Coleoptera: Chrysomelidae) Fecundity and Longevity
Cottonwood leaf beetle, Chrysomela scripta, pupae from a laboratory colony were weighed and monitored through adult emergence, oviposition, and mortality to determine if correlations existed between various pupal or adult parameters and fecundity or longevity. Forty-three female cottonwood leaf beetles were monitored. Pupal weight was not a good indicator of fecundity, total oviposition events, number of eggs/beetle/day, or adult longevity. In addition, adult weight showed very low correlation with fecundity, adult longevity, total oviposition events, or number of eggs/beetle/day. However, adult weight was a marginal indicator of the number of eggs/beetle/day, and correlated well with adult body length. Adult longevity could be used to predict fecundity
Satellite-Based Assessment of Grassland Conversion and Related Fire Disturbance in the Kenai Peninsula, Alaska
Spruce beetle-induced (Dendroctonus rufipennis (Kirby)) mortality on the Kenai Peninsula has been hypothesized by local ecologists to result in the conversion of forest to grassland and subsequent increased fire danger. This hypothesis stands in contrast to empirical studies in the continental US which suggested that beetle mortality has only a negligible effect on fire danger. In response, we conducted a study using Landsat data and modeling techniques to map land cover change in the Kenai Peninsula and to integrate change maps with other geospatial data to predictively map fire danger for the same region. We collected Landsat imagery to map land cover change at roughly five-year intervals following a severe, mid-1990s beetle infestation to the present. Land cover classification was performed at each time step and used to quantify grassland encroachment patterns over time. The maps of land cover change along with digital elevation models (DEMs), temperature, and historical fire data were used to map and assess wildfire danger across the study area. Results indicate the highest wildfire danger tended to occur in herbaceous and black spruce land cover types, suggesting that the relationship between spruce beetle damage and wildfire danger in costal Alaskan forested ecosystems differs from the relationship between the two in the forests of the coterminous United States. These change detection analyses and fire danger predictions provide the Kenai National Wildlife Refuge (KENWR) ecologists and other forest managers a better understanding of the extent and magnitude of grassland conversion and subsequent change in fire danger following the 1990s spruce beetle outbreak
Storage and Behavior of Plant and Diet-Fed Adult Cereal Leaf Beetle, Oulema Melanopus (Coleoptera: Chrysomelidae)
The univoltine life cycle of the cereal leaf beetle Oulema melanopus (L.) in Michigan (Castro et al. 1965) is similar to that reported by Venturi (1942) in Europe. Adults emerge from pupal cells in the soil in mid-June to early July, feed voraciously for about three weeks, and enter aestivation sites. For the remainder of the summer and early autumn only a few adults can be found feeding on late-maturing native grasses. The beetles overwinter and usually emerge in late March to early April and resume feeding. Mating and oviposition occur, and larval development is usually completed by late June in southern Michigan.
Techniques for rearing the cereal leaf beetle on greenhouse-grown small grain seedlings have been developed by Connin, et al. (1968). Maintaining these cultures requires collecting field adults, growing host material, and handling the cultures to insure that all stages will be available for study.
In Michigan during July adults can be collected more economically and in greater numbers in the field than by rearing in the laboratory. A summary of collection techniques, laboratory feeding and storage conditions for large numbers of field-collected cereal leaf beetles is presented in this paper. In addition, the mortality during storage of newly emerged field collected beetles fed either barley seedlings or an artificial diet is compared
Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.
Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality
Applying Imidacloprid Via a Precision Banding System to Control Striped Cucumber Beetle (Coleoptera: Chrysomelidae) in Cucurbits
The striped cucumber beetle, Acalymma vittatum (F.) (Coleoptera: Chrysomelidae), is a key pest of cucurbit crops throughout its range. A novel precision band applicator was designed to inject a solid stream of imidacloprid solution in-furrow directly over the seed during planting to reduce beetle leaf feeding on pumpkin, zucchini, and cucumber crops. In 2004 and 2005, bioassays at the cotyledon through fifth leaf were conducted on striped cucumber beetles using seedling leaf tissue grown from seeds treated using both continuous and precision banded in-furrow imidacloprid solution applications. In 2004, 80% of bioassay trials had treatments with beetle mortality significantly higher than the check, whereas 70% of the bioassay trials showed no significant difference in mortality between continuous in-furrow and precision banded treatments. In 2005, 79% of bioassay trials had treatments with beetle mortality significantly higher than the check, whereas 100% of the bioassays showed no significant difference in beetle mortality between continuous in-furrow and precision banded treatments at the same insecticide rate. The environmental savings of precision banded treatments compared with continuous in-furrow treatment reduced imidacloprid up to 84.5% on a per hectare basis for all cucurbits tested in 2004 and 2005, translating into an economic savings up to 030215/ha. In separate bioassay trials conducted in 2005 on pumpkin, where insecticide band length and injection volume were manipulated independently, several treatments had significantly higher beetle mortality than the check. There was a trend of increased beetle mortality in treatments using shorter band lengths combined with higher insecticide solution volumes
Inert Gases in the Control of Museum Insect Pests
Describes in detail the techniques, materials, and operating parameters of successful insect eradication procedures developed at the Getty Conservation Institute and elsewhere
The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America
Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in western North America.
Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations) in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the western United States.National Science Foundation (U.S.) (ATM- 0929282)National Science Foundation (U.S.) (ATM-0939021)National Science Foundation (U.S.) (ATM-0938940)United States. Dept. of Energy. Office of Scienc
Flight activity of the ambrosia beetles Trypodendron laaeve and Trypodendron lineatum in relation to temperature in southern Sweden
The aim of this study was to investigate the flight activity and abundance of the ambrosia beetle, Trypodendron lineatum Olivier 1795 (Col., Scolytinae) in southern Sweden after storm-fellings in Jan 2005 (Gudrun) and Jan 2007 (Per), that blew down 75 and 12 million m3 of wood, respectively. We also wanted to relate the flight activity to temperature and weather conditions. Unexpectedly, we found the hitherto poorly known species Trypodendron laeve Eggers 1939 (synonyms: Trypodendron proximum Niijima 1909; mistaken for Trypodendron piceum Strand 1946) in our traps. T. laeve has been largely overlooked in the literature, and until recently the distribution of T. leave has been poorly known in Fennoscandia (Kvamme 1986; Martikainen 2000; Lindelöw 2010)
- …
