13,911 research outputs found

    Within-Event Spatially Distributed Bedload: Linking Fluvial Sediment Transport to Morphological Change

    Get PDF
    Maps of apparent bedload velocity are presented along with maps of associated channel change. Apparent bedload velocity is the bias in acoustic Doppler current profiler (aDcp) bottom track (Doppler sonar) due to near-bed particle motion (Rennie et al. 2002). The apparent bedload velocity is correlated to bedload transport (Rennie and Villard 2004), and thus serves as an indicator of local bedload transport. Spatially distributed aDcp surveys in a river reach can be used to generate maps of channel bathymetry, water velocity, bed shear stress, and apparent bedload velocity (Rennie and Church 2010). It is possible to relate the observed spatial patterns of bedload and forcing flow. In this paper, the technique is used to measure bedload flux pathways during two sequential aDcp spatial surveys conducted in a Rees River, New Zealand braid bar diffluence-confluence before and after a major flood event that inundated the entire braid plain. The aDcp surveys were complemented with terrestrial laser scans (TLS) of the bar topography. Linking aDcp bathymetry and TLS topography allowed for generation of complete digitial elevation models (DEMs) of the reach, from which morphological change between surveys were determined. Most intriguingly, the primary bedload pathway observed during the first survey resulted in sufficient deposition during the major flood event to fill and choke off an anabranch. This is perhaps the first direct field measurement of spatially distributed bedload and corresponding morphological change

    Entrainment, motion and deposition of coarse particles transported by water over a sloping mobile bed

    Full text link
    In gravel-bed rivers, bedload transport exhibits considerable variability in time and space. Recently, stochastic bedload transport theories have been developed to address the mechanisms and effects of bedload transport fluctuations. Stochastic models involve parameters such as particle diffusivity, entrainment and deposition rates. The lack of hard information on how these parameters vary with flow conditions is a clear impediment to their application to real-world scenarios. In this paper, we determined the closure equations for the above parameters from laboratory experiments. We focused on shallow supercritical flow on a sloping mobile bed in straight channels, a setting that was representative of flow conditions in mountain rivers. Experiments were run at low sediment transport rates under steady nonuniform flow conditions (i.e., the water discharge was kept constant, but bedforms developed and migrated upstream, making flow nonuniform). Using image processing, we reconstructed particle paths to deduce the particle velocity and its probability distribution, particle diffusivity, and rates of deposition and entrainment. We found that on average, particle acceleration, velocity and deposition rate were responsive to local flow conditions, whereas entrainment rate depended strongly on local bed activity. Particle diffusivity varied linearly with the depth-averaged flow velocity. The empirical probability distribution of particle velocity was well approximated by a Gaussian distribution when all particle positions were considered together. In contrast, the particles located in close vicinity to the bed had exponentially distributed velocities. Our experimental results provide closure equations for stochastic or deterministic bedload transport models.Comment: Submitted to Journal of Geophysical Researc

    Local Rheology Relation with Variable Yield Stress Ratio across Dry, Wet, Dense, and Dilute Granular Flows

    Full text link
    Dry, wet, dense, and dilute granular flows have been previously considered fundamentally different and thus described by distinct, and in many cases incompatible, rheologies. We carry out extensive simulations of granular flows, including wet and dry conditions, various geometries and driving mechanisms (boundary driven, fluid driven, and gravity driven), many of which are not captured by standard rheology models. For all simulated conditions, except for fluid-driven and gravity-driven flows close to the flow threshold, we find that the Mohr-Coulomb friction coefficient μ\mu scales with the square root of the local P\'eclet number Pe\mathrm{Pe} provided that the particle diameter exceeds the particle mean free path. With decreasing Pe\mathrm{Pe} and granular temperature gradient MM, this general scaling breaks down, leading to a yield condition with a variable yield stress ratio characterized by MM

    Dispersal Dynamics in a Wind-Driven Benthic System

    Full text link
    Bedload and water column traps were used with simultaneous wind and water velocity measurements to study postlarval macrofaunal dispersal dynamics in Manukau Harbour, New Zealand. A 12-fold range in mean wind condition resulted in large differences in water flow (12-fold), sediment flux (285-fold), and trap collection of total number of individuals (95-fold), number of the dominant infaunal organism (84-fold for the bivalve Macomona liliana), and number of species (4-fold). There were very strong, positive relationships among wind condition, water velocity, sediment flux, and postlarval dispersal, especially in the bedload. Local density in the ambient sediment was not a good predictor of dispersal. Results indicate that postlarval dispersal may influence benthic abundance pat- terns over a range of spatial scales

    Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta

    Get PDF
    Rivers and turbidity currents are the two most important sediment transport processes by volume on Earth. Various hypotheses have been proposed for triggering of turbidity currents offshore from river mouths, including direct plunging of river discharge, delta mouth bar flushing or slope failure caused by low tides and gas expansion, earthquakes and rapid sedimentation. During 2011, 106 turbidity currents were monitored at Squamish Delta, British Columbia. This enables statistical analysis of timing, frequency and triggers. The largest peaks in river discharge did not create hyperpycnal flows. Instead, delayed delta-lip failures occurred 8–11 h after flood peaks, due to cumulative delta top sedimentation and tidally-induced pore pressure changes. Elevated river discharge is thus a significant control on the timing and rate of turbidity currents but not directly due to plunging river water. Elevated river discharge and focusing of river discharge at low tides cause increased sediment transport across the delta-lip, which is the most significant of all controls on flow timing in this setting

    Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow

    Full text link
    A numerical method based upon the immersed boundary technique for the fluid-solid coupling and on a soft-sphere approach for solid-solid contact is used to perform direct numerical simulation of the flow-induced motion of a thick bed of spherical particles in a horizontal plane channel. The collision model features a normal force component with a spring and a damper, as well as a damping tangential component, limited by a Coulomb friction law. The standard test case of a single particle colliding perpendicularly with a horizontal wall in a viscous fluid is simulated over a broad range of Stokes numbers, yielding values of the effective restitution coefficient in close agreement with experimental data. The case of bedload particle transport by laminar channel flow is simulated for 24 different parameter values covering a broad range of the Shields number. Comparison of the present results with reference data from the experiment of Aussillous et al. (J. Fluid Mech. 2013) yields excellent agreement. It is confirmed that the particle flow rate varies with the third power of the Shields number once the known threshold value is exceeded. The present data suggests that the thickness of the mobile particle layer (normalized with the height of the clear fluid region) increases with the square of the normalized fluid flow rate.Comment: accepted for publication in Int. J. Multiphase Flow, more data available at http://www.ifh.kit.edu/dns_data/particles/bedload

    Comparisons between sediment transport models and observations made in wave and current flows above plane beds

    Get PDF
    As a part of the MAST2 G8-M Coastal Morphodynamics project, the predictions of four sediment transport models have been compared with detailed laboratory data sets obtained in the bottom boundary layer beneath regular waves, asymmetrical waves, and regular waves superimposed co-linearly on a current. Each data set was obtained in plane bed, sheet flow, conditions and each of the four untuned numerical models has provided a one-dimensional vertical (1DV), time-varying, representation of the various experimental situations. Comparisons have been made between the model predictions and measurements of both time-dependent sediment concentration, and also wave-averaged horizontal velocity and concentration. For the asymmetrical waves and for the combined wave-current flows, comparisons have been made with vertical profiles of the cycle-averaged sediment flux, and also with the vertically-integrated net sediment transport rate. Each of the turbulence diffusion models gives an accurate estimate of the net transport rate (invariably well within a factor of 2 of the measured value). In contrast, none of the models provides a good detailed description of the time-dependent suspended sediment concentration, due mainly to the inability of conventional turbulence diffusion schemes to represent the entrainment of sediment into suspension by convective events at flow reversal. However, in the cases considered here, this has not seriously affected the model predictions of the net sediment flux, due to the dominance of the near-bed transport. The comparisons in this paper are aimed not only at testing the predictive capability of existing sediment transport modelling schemes, but also at highlighting some of their deficiencies
    corecore