410,432 research outputs found

    Comment: Bayesian Checking of the Second Levels of Hierarchical Models

    Full text link
    We discuss the methods of Evans and Moshonov [Bayesian Analysis 1 (2006) 893--914, Bayesian Statistics and Its Applications (2007) 145--159] concerning checking for prior-data conflict and their relevance to the method proposed in this paper. [arXiv:0802.0743]Comment: Published in at http://dx.doi.org/10.1214/07-STS235C the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian computational methods

    Full text link
    In this chapter, we will first present the most standard computational challenges met in Bayesian Statistics, focussing primarily on mixture estimation and on model choice issues, and then relate these problems with computational solutions. Of course, this chapter is only a terse introduction to the problems and solutions related to Bayesian computations. For more complete references, see Robert and Casella (2004, 2009), or Marin and Robert (2007), among others. We also restrain from providing an introduction to Bayesian Statistics per se and for comprehensive coverage, address the reader to Robert (2007), (again) among others.Comment: This is a revised version of a chapter written for the Handbook of Computational Statistics, edited by J. Gentle, W. Hardle and Y. Mori in 2003, in preparation for the second editio

    Considerate Approaches to Achieving Sufficiency for ABC model selection

    Full text link
    For nearly any challenging scientific problem evaluation of the likelihood is problematic if not impossible. Approximate Bayesian computation (ABC) allows us to employ the whole Bayesian formalism to problems where we can use simulations from a model, but cannot evaluate the likelihood directly. When summary statistics of real and simulated data are compared --- rather than the data directly --- information is lost, unless the summary statistics are sufficient. Here we employ an information-theoretical framework that can be used to construct (approximately) sufficient statistics by combining different statistics until the loss of information is minimized. Such sufficient sets of statistics are constructed for both parameter estimation and model selection problems. We apply our approach to a range of illustrative and real-world model selection problems

    Philosophy and the practice of Bayesian statistics

    Full text link
    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework.Comment: 36 pages, 5 figures. v2: Fixed typo in caption of figure 1. v3: Further typo fixes. v4: Revised in response to referee

    Improving Bayesian statistics understanding in the age of Big Data with the bayesvl R package

    Get PDF
    The exponential growth of social data both in volume and complexity has increasingly exposed many of the shortcomings of the conventional frequentist approach to statistics. The scientific community has called for careful usage of the approach and its inference. Meanwhile, the alternative method, Bayesian statistics, still faces considerable barriers toward a more widespread application. The bayesvl R package is an open program, designed for implementing Bayesian modeling and analysis using the Stan language’s no-U-turn (NUTS) sampler. The package combines the ability to construct Bayesian network models using directed acyclic graphs (DAGs), the Markov chain Monte Carlo (MCMC) simulation technique, and the graphic capability of the ggplot2 package. As a result, it can improve the user experience and intuitive understanding when constructing and analyzing Bayesian network models. A case example is offered to illustrate the usefulness of the package for Big Data analytics and cognitive computing
    corecore