948,891 research outputs found

    Bayesian correction for covariate measurement error: a frequentist evaluation and comparison with regression calibration

    Get PDF
    Bayesian approaches for handling covariate measurement error are well established, and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration (RC), arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to RC, and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next we describe the closely related maximum likelihood and multiple imputation approaches, and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of RC and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey

    Bayesian Reconstruction of Missing Observations

    Get PDF
    We focus on an interpolation method referred to Bayesian reconstruction in this paper. Whereas in standard interpolation methods missing data are interpolated deterministically, in Bayesian reconstruction, missing data are interpolated probabilistically using a Bayesian treatment. In this paper, we address the framework of Bayesian reconstruction and its application to the traffic data reconstruction problem in the field of traffic engineering. In the latter part of this paper, we describe the evaluation of the statistical performance of our Bayesian traffic reconstruction model using a statistical mechanical approach and clarify its statistical behavior

    Perfect Regular Equilibrium

    Get PDF
    We propose a revised version of the perfect Bayesian equilibrium in general multi-period games with observed actions. In finite games, perfect Bayesian equilibria are weakly consistent and subgame perfect Nash equilibria. In general games that allow a continuum of types and strategies, however, perfect Bayesian equilibria might not satisfy these criteria of rational solution concepts. To solve this problem, we revise the definition of the perfect Bayesian equilibrium by replacing Bayes' rule with a regular conditional probability. We call this revised solution concept a perfect regular equilibrium. Perfect regular equilibria are always weakly consistent and subgame perfect Nash equilibria in general games. In addition, perfect regular equilibria are equivalent to simplified perfect Bayesian equilibria in finite games. Therefore, the perfect regular equilibrium is an extended and simple version of the perfect Bayesian equilibrium in general multi-period games with observed actions

    A Bayesian approach to constrained single- and multi-objective optimization

    Get PDF
    This article addresses the problem of derivative-free (single- or multi-objective) optimization subject to multiple inequality constraints. Both the objective and constraint functions are assumed to be smooth, non-linear and expensive to evaluate. As a consequence, the number of evaluations that can be used to carry out the optimization is very limited, as in complex industrial design optimization problems. The method we propose to overcome this difficulty has its roots in both the Bayesian and the multi-objective optimization literatures. More specifically, an extended domination rule is used to handle objectives and constraints in a unified way, and a corresponding expected hyper-volume improvement sampling criterion is proposed. This new criterion is naturally adapted to the search of a feasible point when none is available, and reduces to existing Bayesian sampling criteria---the classical Expected Improvement (EI) criterion and some of its constrained/multi-objective extensions---as soon as at least one feasible point is available. The calculation and optimization of the criterion are performed using Sequential Monte Carlo techniques. In particular, an algorithm similar to the subset simulation method, which is well known in the field of structural reliability, is used to estimate the criterion. The method, which we call BMOO (for Bayesian Multi-Objective Optimization), is compared to state-of-the-art algorithms for single- and multi-objective constrained optimization

    PAC-Bayesian Theory Meets Bayesian Inference

    Get PDF
    We exhibit a strong link between frequentist PAC-Bayesian risk bounds and the Bayesian marginal likelihood. That is, for the negative log-likelihood loss function, we show that the minimization of PAC-Bayesian generalization risk bounds maximizes the Bayesian marginal likelihood. This provides an alternative explanation to the Bayesian Occam's razor criteria, under the assumption that the data is generated by an i.i.d distribution. Moreover, as the negative log-likelihood is an unbounded loss function, we motivate and propose a PAC-Bayesian theorem tailored for the sub-gamma loss family, and we show that our approach is sound on classical Bayesian linear regression tasks.Comment: Published at NIPS 2015 (http://papers.nips.cc/paper/6569-pac-bayesian-theory-meets-bayesian-inference

    Bayesian games with a continuum of states

    Get PDF
    We show that every Bayesian game with purely atomic types has a measurable Bayesian equilibrium when the common knowl- edge relation is smooth. Conversely, for any common knowledge rela- tion that is not smooth, there exists a type space that yields this common knowledge relation and payoffs such that the resulting Bayesian game will not have any Bayesian equilibrium. We show that our smoothness condition also rules out two paradoxes involving Bayesian games with a continuum of types: the impossibility of having a common prior on components when a common prior over the entire state space exists, and the possibility of interim betting/trade even when no such trade can be supported ex ante

    On computational tools for Bayesian data analysis

    Full text link
    While Robert and Rousseau (2010) addressed the foundational aspects of Bayesian analysis, the current chapter details its practical aspects through a review of the computational methods available for approximating Bayesian procedures. Recent innovations like Monte Carlo Markov chain, sequential Monte Carlo methods and more recently Approximate Bayesian Computation techniques have considerably increased the potential for Bayesian applications and they have also opened new avenues for Bayesian inference, first and foremost Bayesian model choice.Comment: This is a chapter for the book "Bayesian Methods and Expert Elicitation" edited by Klaus Bocker, 23 pages, 9 figure
    corecore